Syllabus of 4 + 1 Year Integrated UG and PG Programme

w. e. f 2024-25 Academic Year

GRADUATE SCHOOL Mahatma Gandhi University P. D. Hills P O Kottayam, Kerala <u>www.gs.mgu.ac.in</u> <u>www.mgu.ac.in</u>

Schools offering Majors

SL.No	School/Centre
1	School of Bio Sciences
2	School of Chemical Sciences
3	School of Computer Sciences
4	School of Environmental Sciences
5	School of Gandhian Thought and Development Studies
6	School of International Relations and Politics
7	School of Pure and Applied Physics
8	School of Social Sciences

S1. No.	Major	Intake							
	SCIENCE								
1	Bio Sciences	6**							
2	Chemistry	6							
3	Computer Science	6							
4	Environmental Science	6							
5	Physics	6							
	SOCIAL SCIENCES								
1	Development Studies	5							
2	Gandhian Studies	5							
3	History	10							
4	International Relations and Politics	10							

Majors offered and Intake *1 seat shall be sanctioned over and above the intake in each major in the 3rd semester for students who opt for a change of major after two semesters.

**Progression to PG Shall be based on the specialization selected by students as Biochemistry (2 seats) Biotechnology (2 seats) and Microbiology (2 seats) based on merit.

Schools offering Minors/MDCs/AECs/VACs/SECs

SL.No	School/Centre
1	School of Artificial Intelligence And Robotics
2	School of Behavioural Sciences
3	School of Biosciences
4	School of Chemical Sciences
5	School of Computer Sciences
6	School of Data Analytics
7	School of Energy Materials
8	School of Environmental Sciences
9	School of Food Science And Technology
10	School of Gandhian Thought And Development Studies
11	School of Gender Studies
12	School of Indian Legal Thought
13	School of International Relations And Politics
14	School of Letters
15	School of Mathematics And Statistics
16	School of Nanoscience And Nano Technology
17	School of Pedagogical Sciences
18	School of Polymer Science And Technology
19	School of Pure And Applied Physics
20	School of Social Sciences
21	School of Tourism Studies
22	International and Inter University Centre for Nanoscience and Nanotechnology
23	K N Raj School of Economics

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University School of Environmental Sciences

Course Code	Title	Credits	Hours per Week	Level	Туре	
	1	<u> </u>	Theory	Practical		
			SEMESTER I			
MG1DSCUEN1 01	Introduction to Environmental Sciences	4	4		Foundation (100-199)	Major
MG1DSCUES1 21	Fundamentals of Environmental Science	4	4			Minor A
MG1DSCUES1 41	Natural disasters	4	4			Minor B
MG1MDCUES	Environment and Development	3	3			MDC
	AEC (Eng)	3			"	
	AEC (Mal)	3			<i>и</i>	
			SEMESTER II			
MG2DSCUEN1 01	Earth System Sciences	4	3	2	u	Major
MG2DSCUES1 21	Introduction to Ecosystems	4	4		u	Minor A
MG2DSCUES1 41	Concepts of Disaster Management	4	4		<i>"</i>	Minor B
MG2MDCUES 101	Sanitation, Health and Environment	3	3			MDC

	AEC ([~~~)	2			"	
	AEC (Eng)	3				
	AEC (Mal)	3			u	
		I	SEMESTER III		<u> </u>	1
MG3DSCUEN2 01	Ecology and Environment	4	3	2	Intermediate (200-299)	Major
MG3DSCUEN2 02	Environmental Chemistry	4	3	2	u	Major
MG3DSCUEN2 03	Environmental Pollution and Control	4	4		u	Major
MG3DSCUES2 21	Environmental Pollution	4	3	2	u	Minor A
MG3MDCUES 201	Sustainable Development	3	3		u	MDC
MG3MDCUES 202	Fundamentals of Disaster Management	3	3			MDC
MG3MDCUES 203	Climate Change	3	3			MDC
MG3VACUES2 01	Carbon footprint analysis	3	3		"	VAC
			SEMESTER IV			1
MG4DSCUEN2 01	Environmental Monitoring and Assessment	4	3	2	u	Major
MG4DSCUEN2 02	Biodiversity & Conservation biology	4	4		a	Major
MG4DSCUEN2 03	Natural and Anthropogeni	4	4		u	Major

	c disasters					
MG4DSCUES2	Waste	4	4		u	Minor B
41	Management					
MG4SECUES2	Biodiversity	3	2	2	u	SEC
01	Assessment					
MG4VACUES2	Environmental	3	1	4	u	VAC
01	Analysis					
MG4INTUEN2	Internship/	2				
00	Fieldwork					
	1	<u> </u>	SEMESTER V	1	I	1
MG5DSCUEN3	Environment	4	4		Higher	Major
01	Management				(300-399)	
MG5DSCUEN3	Analytical	4	3	2	u	Major
02	techniques and					
	instrumentati					
	on					
MG5DSCUEN3	Environmental	4	4		u	Major
03	Biotechnology					
MG5DSCUEN3 04	Remote Sensing and	4	3	2	u	Major
	GIS					
MG5SECUES3	Surveying and	3	1	4	u	SEC
01	Mapping Techniques					
MG5VACUES3	Elemental and	3	1	4	u	VAC
01	Metal analysis					
			SEMESTER VI			
MG6DSCUEN3	Environmental	4	4		u	Major
01	Law, Policies, and Education					

MG6DSCUEN3 02	Environment Impact Assessment	4	4		u	Major
MG6DSCUEN3 03	Ecotoxicology	4	4		и	Major
MG6DSEUEN3 04	Energy Resources and Management	4	4		u	Major(E) (any 2)
MG6DSEUEN3 05	Solid waste management	4	4		u	-
MG6DSEUEN3 06	Wildlife Protection and Management	4	4			-
MG6SECUES3 01	Environment Management Plan	3	1	4	u	SEC
Total Credits	133					1

	SEMESTER VII								
MG7DSCUEN4 01	Research Methodology and Statistics	4	4		Advanced (400-499)	Major			
MG7DSCUEN4 02	Wetland Management	4	4		u	Major			
MG7DSEUEN4 03	Geoinformatic s and environmental data analytics	4	3	2	u	Major(E) (any one)			
MG7DSEUEN4 04	Environmental Microbiology	4	3	2		-			
MG7DSEUEN4 05	Disaster Risk Reduction for Sustainable	4	4						

	Development				
MG7DSCUES42 1	Remote sensing and GIS	4		"	Minor A
MG7DSEUES42 2	Climate change and Governance	4			Minor A (E)
MG7DSEUES44 1	Disaster Risk Management	4			MinorA/B (E)
			SEMESTER VIII		
MG8DSCUEN4 01	Climate Change: Mitigation, Adaptation and Resilience	4	4	u	Major
MG8DSEUEN4 02	Environmental Economics for Sustainable Development	4	4	u	Major (E) (any one)
MG8DSEUEN4 03	Environmental Health and Safety	4	4		_
MG8DSEUEN4 04	Standards in Humanitarian Aid, Relief and Rehabilitation	4	4		_
MG8DSCUEN4 05	*Ecohydrology	4	4	u	Major*
MG8DSCUEN4 06	*Water Management	4	4	u	Major*
MG8DSCUEN4 07	*Hazardous Waste Management	4	4	u	Major*
MG8RPHUEN4 00	Research Project	12		u	

	Total Credit	5	44			
			SEMESTER	IX	1 1	
	EN	VIRONME	NT SCIENCE & MANA	GEMENT (Spec	ialization)	
MG9DSCUEN5 01	Environmental Engineering	4	4		PG Level (500- 599)	Major
MG9DSCUEN5 02	Ecosystem Restoration	4	4		u	Major
MG9DSCUEN5 03	Advanced Geoinformatic s	4	2	4	<i>"</i>	Major
MG9DSEUEN5 04	Ecoinformatics	4	3	2	a	Major (E)
MG9DSEUEN5 05	Advanced instrumentatio n techniques	4	2	4	<i>u</i>	Major (E)
	ENVIRO	NMENT SC	IENCE & DISASTER N	ANAGEMENT	(Specialization)	I
MG9DSCUEN5 11	Disaster Risk Assessment & Mitigation	4	4		PG Level (500- 599)	Major
MG9DSCUEN5 12	Standards in Humanitarian Aid, Relief and Rehabilitation	4	4		u u	Major
MG9DSCUEN5 13	Social Work Approaches and Practices	4	4		<i>u</i>	Major
MG9DSEUEN5 14	Governance, Law and Policies in Disaster Management	4	4		<i>u</i>	Major (E) (Any two)
MG9DSEUEN5 15	Public health aspects and emergency services in	4	4			

	disaster management					
MG9DSEUEN5 16	Advanced Geoinformatic s	4	2	4		
MG9DSEUEN5 17	Advanced instrumentatio n techniques	4	2	4		
			SEMESTI	ER X		
MG10RPHUEN 500	Research Project	20			u	
		4	4		и	Major**
		4	4		и	Major**
		4	4		и	Major**
		4	4		"	Major**
		4	4		и	Major**
Total Credits			40			

*Only for 4-Years Honours Students **Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level	Foundation	Intermediate	Higher	Advance	PG
	(100-199	(200-299)	(300-	d (400-	Level
			399)	499)	(500-
					599)

Туре	Major	Minor	MDC	SEC	VAC	AEC

Scheme for 4 + 1 Integrated UG and PG Programme Graduate School Mahatma Gandhi University School of Environmental Sciences

Course Code	Title	Credits	Hours p	er Week	Level	Туре
			Theory	Practical		
		DMDOMDT	 т			
MOIDOUENIOI		EMESTER			Darry de Cerry	N/ - :
MG1DSCUEN101	Introduction to Environmental Sciences	4	4		Foundation (100-199)	Major
MG1DSCUES121	G1DSCUES121 Fundamentals of Environmental Science		4			Minor A
MG1DSCUES141	Natural disasters	4	4			Minor B
MG1MDCUES101	Environment and Development	3	3			MDC
	AEC (Eng)	3			۰۲	
	AEC (Mal)	3			"	
	S	EMESTER	п			
MG2DSCUEN101	Earth System Sciences	4	3	2	"	Major
MG2DSCUES121	Introduction to Ecosystems	4	4		"	Minor A
MG2DSCUES141	Concepts of Disaster Management	4	4		"	Minor B
MG2MDCUES101	Sanitation, Health and Environment	3	3			MDC
	AEC (Eng)	3			"	
	AEC (Mal)	3			"	
	SI	EMESTER	ш			
MG3DSCUEN201	Ecology and Environment	4	3	2	Intermediate (200-299)	Major
MG3DSCUEN202	Environmental Chemistry	4	3	2	ű	Major
MG3DSCUEN203	Environmental Pollution and Control	4	4		"	Major
MG3DSCUES221	Environmental Pollution	4	3	2	"	Minor A
MG3MDCUES201	Sustainable Development	3	3		"	MDC
MG3MDCUES202	Fundamentals of Disaster Management	3	3			MDC
MG3MDCUES203	Climate Change	3	3			MDC
MG3VACUES201	Carbon footprint analysis	3	3		ű	VAC
	SI	EMESTER	IV			
MG4DSCUEN201	Environmental Monitoring and Assessment	4	3	2	ű	Major
MG4DSCUEN202	Biodiversity & Conservation biology	4	4		"	Major

MG4DSCUEN203	Natural and Anthropogenic disasters	4	4		"	Major
MG4DSCUES241	Waste Management	4	4		"	Minor B
MG4SECUES201	Biodiversity Assessment	3	2	2	"	SEC
MG4VACUES201	Environmental Analysis	3	1	4	"	VAC
MG4INTUEN200	Internship/Fieldwork	2				
	S	EMEST	ERV			
MG5DSCUEN301	Environment Management	4	4		Higher (300-399)	Major
MG5DSCUEN302	Analytical techniques and instrumentation	4	3	2	"	Major
MG5DSCUEN303	Environmental Biotechnology	4	4		"	Major
MG5DSCUEN304	Remote Sensing and GIS	4	3	2	"	Major
MG5SECUES301	Surveying and Mapping Techniques	3	1	4	"	SEC
MG5VACUES301	Elemental and Metal analysis	3	1	4	"	VAC
	SI	EMEST				
MG6DSCUEN301	Environmental Law, Policies, and Education	4	4		"	Major
MG6DSCUEN302	Environment Impact Assessment	4	4		"	Major
MG6DSCUEN303	Ecotoxicology	4	4		"	Major
MG6DSEUEN304	Energy Resources and Management	4	4		"	Major(E) (any 2)
MG6DSEUEN305	Solid waste management	4	4		"	
MG6DSEUEN306	Wildlife Protection and Management	4	4			
MG6SECUES301	Environment Management Plan	3	1	4	"	SEC
To	tal Credits	133				

	SEM	ESTER				
MG7DSCUEN401	Research Methodology and Statistics	4	4		Advanced (400-499)	Major
MG7DSCUEN402	Wetland Management	4	4		"	Major
MG7DSEUEN403	Geoinformatics and environmental data analytics	4	3	2	"	Major(E) (any one)
MG7DSEUEN404	Environmental Microbiology	4	3	2		
MG7DSEUEN405	Disaster Risk Reduction for Sustainable Development	4	4			
MG7DSCUES421	Remote sensing and GIS	4			"	Minor A
MG7DSEUES422	Climate change and Governance	4				Minor A (E)
MG7DSEUES441	Disaster Risk Management	4				MinorA/ B (E)

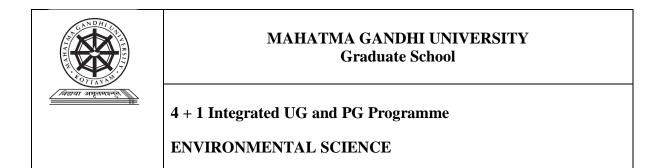
	SEM	ESTER V				
MG8DSCUEN401	Climate Change: Mitigation, Adaptation and Resilience	4	4		"	Major
MG8DSEUEN402	Environmental Economics for Sustainable Development	4	4		ű	Major (E) (any one)
MG8DSEUEN403	Environmental Health and Safety	4	4			
MG8DSEUEN404	Standards in Humanitarian Aid, Relief and Rehabilitation	4	4			
MG8DSCUEN405	*Ecohydrology	4	4		"	Major*
MG8DSCUEN406	*Water Management	4	4		"	Major*
MG8DSCUEN407	*Hazardous Waste Management	4	4		"	Major*
MG8RPHUEN400	Research Project	12			"	
	tal Credits	44				
	SEM	IESTER & MANA		(Specializati	on)	
MG9DSCUEN501	Environmental Engineering	4	4		PG Level (500-599)	Major
MG9DSCUEN502	Ecosystem Restoration	4	4		"	Major
MG9DSCUEN503	Advanced Geoinformatics	4	2	4	"	Major
MG9DSEUEN504	Ecoinformatics	4	3	2	"	Major (E)
MG9DSEUEN505	Advanced instrumentation techniques	4	2	4	"	Major (E)
EN	VIRONMENT SCIENCE & DIS	ASTER I	MANAGEM	IENT (Specia	lization)	
MG9DSCUEN511	Disaster Risk Assessment & Mitigation	4	4		PG Level (500-599)	Major
MG9DSCUEN512	Standards in Humanitarian Aid, Relief and Rehabilitation	4	4		"	Major
MG9DSCUEN513	Social Work Approaches and Practices	4	4		"	Major
MG9DSEUEN514	Governance, Law and Policies in Disaster Management	4	4		ű	Major (E) (Any two)
MG9DSEUEN515	Public health aspects and emergency services in disaster management	4	4			
MG9DSEUEN516	Advanced Geoinformatics	4	2	4		
MG9DSEUEN517	Advanced instrumentation techniques	4	2	4	"	
	SEN	MESTER	X	I	_	
MG10RPHUEN500	Research Project	20			"	
		4	4		"	Major**
		4	4		"	Major**
		4	4		"	Major**
		4	4		"	Major**
		4	4		"	Major**
Total Credits		40	1	1	1	1

*Only for 4-Years Honours Students **Only for students who opt for theory courses instead of Research Project

Note: General foundations courses shall be offered by different schools. Students can flexibly choose the courses across disciplines.

Level		dation 199)	Interm (200-		Hig (300-		Advanced (400-499)	PG Level (500-599)
				0.5.0		1.5.0	٦	
Туре	Major	Minor	MDC	SEC	VAC	AEC		

List of Minor, MDC, VAC and SEC offered by


Semester Course Type Semester - 1 Fundamentals of Environmental Science Minor Natural disasters Minor Environment and Development MDC Semester - 2 Introduction to Ecosystems Minor Concepts of Disaster Management Minor Sanitation, Health and Environment MDC Semester - 3 **Environmental Pollution** Minor MDC Sustainable Development Fundamentals of Disaster Management MDC MDC Climate Change Carbon footprint analysis VAC Semester -4 Waste Management Minor SEC **Biodiversity Assessment Environmental Analysis** VAC Semester -5 Surveying and Mapping Techniques SEC VAC Elemental and Metal analysis Semester - 6 Environment Management Plan SEC Semester -7 Minor Remote sensing and GIS Climate change and Governance Minor Disaster Risk Management Minor

School of Environmental Sciences

Syllabus of Major Courses

Programme Specific Outcome (PSO)

PSO 1	To understand the basic concepts of environment, interactions with the earth and
	various ecosystems associated with it
PSO 2	Capable of analysing, evaluating, and interpreting the causes and effects of various
	environmental problems at local, regional, and global scales to develop management
	strategies.
PSO 3	Developing specific analytical skills in determining the magnitude of different kinds
	of environmental pollution and their sources using analytical and computational
	techniques.
PSO 4	Gaining a thorough knowledge of research methodology in general; specific ideas on
	understanding a research problem, identifying the research gaps, developing suitable
	research techniques/ methods including research design, data collection, data analysis
	with suitable statistical tools, interpretation of the findings leading to the perfect
	solution to the research problem undertaken.
PSO 5	Capacity to develop and apply treatment technology for water, wastewater, air, soil
	and solid waste and the ability to use different tools and techniques for environment
	management and develop skills in environment and disaster management
PSO 6	Mastering the core concepts and methods of economic, political, and social analysis,
	which are essential in designing and evaluating of environmental policies; conducting
	environmental/green auditing
PSO 7	Gaining a deep knowledge of ethical, cross-cultural, and historical context of
	environmental issues and the links between human and natural systems. Thus to evolve
	as an entrepreneur, a consultant with leadership skills necessary for the conservation
	of the environment
L	

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Introduction to Environmental Science			
Course Type	Major	Major		
Course Level	100-199			
Course Code	MG1DSCUEN101			
Course Overview	The course introduces environmental science, exploring its definition, scope, and multidisciplinary nature. It covers the history of environmental protection, significant global issues, and key environmental movements. Additionally, it delves into environmental ethics, highlighting the importance of resource consumption and conservation.			
Semester	1	Credit	4	
Total Student Learning Time	Instructional hours for theoryInstructional hours for practical/lab work/fieldwork6015			
Pre-requisite	A foundational understanding of with current environmental issue		oncepts and familiarity	

CO No.	Expected Course Outcome	Learning Domains	PSO
	Upon completion of this course, students will be able to;		
1	Dilate upon the scope and importance of Environmental Science and its multidisciplinary nature.	U	1
2	Comment on the history and origin of environmental protection initiatives and key international conferences.	R	1
3	Identify and classify major types of natural resources	U	1

4	Analyze the developmental issues and their environmental	An	2
	impacts.		
5	Apply principles of environmental ethics to address the issues of equity and disparity.	А	1

		CO NO.			
Module 1: Introduction to Environmental Science & Conservation History	15 Hours	1, 2			
Definition, scope, and importance of Environmental Science, Multidise of environmental science; Significance of Environmental Education; Environment.	1 •				
Origin of conservation NGOs like WWF, UNEP, etc., Silent Spring, Our Common Future. International initiatives for environmental protection – Ramsar convention, Stockholm conference, Rio Conferences, Conferences for reducing greenhouse gases and Ozone depleting substances, COPs; Major Environmental movements					
Module 2: Natural Resources	15 Hours	1,3			
Introduction to natural resources; Types of natural resources- Renewable and Non- renewable resources; Types of natural resources- Forest resources, Water and soil resources, Mineral Resources, Energy Resources					
Module 3: Global Environmental Issues 15 Hours					
Developmental issues and related impacts such as ecological degradation; environmental pollution; development-induced displacement, resettlement, and rehabilitation: problems, concerns, and compensative mechanisms; discussion on Project Affected People (PAPs).					
environmental pollution; development-induced displacement, res rehabilitation: problems, concerns, and compensative mechanisms;	ettlement, and				
environmental pollution; development-induced displacement, res rehabilitation: problems, concerns, and compensative mechanisms;	ettlement, and discussion on ssues in Indian conment; urban ween economic				
environmental pollution; development-induced displacement, res rehabilitation: problems, concerns, and compensative mechanisms; Project Affected People (PAPs). Production and consumption-oriented approaches to environmental i and global context; impact of industry and technology on the envir sprawl, traffic congestion, and social-economic problems; conflict bet	ettlement, and discussion on ssues in Indian ronment; urban ween economic crisis clear Incidents,				

Aldo Leopold's Land Ethics and Gross National Happiness, Resource consumption patterns and the need for their equitable utilisation; Equity – Disparity in the Northern and Southern countries; Urban-rural equity issues; The need for Gender Equity; Preserving resources for future generations; The rights of animals; The ethical basis of environment education and awareness; The conservation ethic and traditional value systems of India; Anthropocentrism and Ecocentrism

Mode of Transaction	Classroom activities Field activities Lab based activities
Mode of Assessment	Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final Exam (70%)

Learning Resources

- 1. Basu, M., & Xavier Savarimuthu, S. J. (2017). Fundamentals of environmental studies. Cambridge University Press.
- 2. Chawla, S. (2013). A Textbook of Environmental Studies. McGraw Hill Education (India) Private Limited.
- 3. Chokkan, K.B., Pandya, H. & Raghunathan, H. (eds). 2004. Understanding Environment. Sagar Publication India Pvt. Ltd., New Delhi
- 4. Elliot, D. 2003. Energy, Society & Environment, Technology for a Sustainable Future. Routledge Press.
- 5. Guha, R. 1989. Ecological change and peasant resistance in the Himalaya. Unquiet Woods, Oxford University Press, Delhi.
- 6. Miller, T.G. 2012. Environmental Science. Wadsworth Publishing Co
- 7. National Research Council (NRC). 1996. Linking Science and Technology to Society's Environmental Goals. National Academy Press.

	MAHATMA GANDHI UNIVERSITY Graduate School
विद्यवा अमृतपञ्चते	4 + 1 Integrated UG and PG Programme ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Earth System Sciences			
Course Type	Major	Major		
Course Level	100-199	100-199		
Course Code	MG2DSCUEN101			
Course Overview	This course covers the Earth's formation, structure, and processes, including the formation of the solar system, geological time scale, plate tectonics, earthquakes, volcanoes, atmospheric circulation, and surface processes. It also examines mineral and rock formation and the impact of human activities on landscapes.			
Semester	2	Credit	4	
Total Student Learning Time	Instructional hours for theory 60		Instructional hours for practical/lab work// fieldwork	
			15	
Pre-requisite	Basic knowledge about Earth			

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;		
1	Explain the formation of the Solar System, Earth's structure, and the origin of life.	R	1

2	Describe the geological processes occurring on Earth.	U	1
3	Understand the dynamics of Earth's atmosphere	U	1
4	Analyze different types and properties of rocks and minerals	An	1
5	Interpret surface and groundwater hydrology	U	1

		CO No.
Module 1: History of the Earth	15 Hours	1
Formation of Solar system and planetary differentiation; formation of the Earth: formation and composition of core, mantle, crust, atmosphere, and hydrosphere; chemical composition of the earth; geological time scale and major changes on the Earth with time.		
Module 2: Endogenic Processes and Exogenic Processes	15 Hours	2, 3
Movement of lithospheric plates; mantle convection and plate tector hot spots, plate boundaries; continental drift and seafloor spreading.	nics, major plates and	
Introduction to Atmosphere and atmospheric processes- Atmospheric Structure, Clouds, Thermodynamics, Atmospheric circulations. Land surface processes: Aeolian, fluvial, and glacial processes, Weathering, erosional, and depositional landscapes; coastal processes. Groundwater hydrology.		
Module 3: Minerals and rocks	15 Hours	4
Minerals; atomic structure, physical properties, major rock-forming minerals; Rocks- classification, form, texture, and mineralogy of common Igneous, Metamorphic, Sedimentary, Rock cycle; Rock deformation: folds, faults and joints		
Module 4: Hydrology 15 Hours		2, 5
Surface water hydrology: Hydrological cycle, Factors affecting hydrological cycle.		
Groundwater hydrology: Aquifers – types and properties; Groundwater recharge; Methods of groundwater abstraction- undesirable side effects of over-exploitation. Sustainable groundwater development and management.		

Mode of	Classroom activities
Transaction	Field activities
	1. Local Geological Fieldwork
	2. Identifying common minerals and rocks in the field
	3. Identification of common rock structures in the field
	Lab based activities

	1. Identification of Minerals and Rocks
Mode of Assessment	Continuous Evaluation Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final exam (70%)

- 1. Bridge, J., &Demicco, R. 2008. Earth Surface Processes, Landforms & Sediment deposits. Cambridge University Press.
- Duff, P. M. D., & Duff, D. (Eds.). 1993. Holmes' Principles of Physical Geology. Taylor & Francis.
- 3. Gupta, A. K., Anderson, D. M., &Overpeck, J. T. 2003. Abrupt changes in the Asian southwest monsoon during

the Holocene and their links to the North Atlantic Ocean. Nature 421: 354-357.

- 4. Keller, E.A. 2011. Introduction to Environmental Geology (5th edition). Pearson Prentice Hall.
- 5. Leeder, M., Arlucea, M.P. 2005. Physical Processes in Earth & Environmental Sciences. Blackwell Publishing.
- 6. Pelletier, J. D. 2008. Quantitative Modeling of Earth Surface Processes (Vol. 304). Cambridge: Cambridge University Press. Chicago.
- 7. Grotzinger et al 2007 Understanding Earth, WH Freeman New York, 579 p

Syllabus of Minor Courses

AND HICKNER	MAHATMA GANDHI UNIVERSITY Graduate School
विद्याया अमृतमयन्ते	4 + 1 Integrated UG and PG Programme Environmental Science

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Fundamentals of Environmental Science			
Course Type	Minor			
Course Level	100-199			
Course Code	MG1DSCUES121	MG1DSCUES121		
Course Overview	The course introduces environmental science, exploring its definition, scope, and multidisciplinary nature. It covers the history of environmental protection, significant global issues, and key environmental movements. Additionally, it delves into environmental ethics, highlighting the importance of resource consumption and conservation.			
Semester	1 C	redit	4	
Total Student Learning Time	Instructional hours for theory 60	Instructional hours for practical/lab work// fieldwork 15		
Pre-requisite	A foundational understanding of basic science concepts and familiarity with current environmental issues			

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be able to;		
1	Dilate upon the scope and importance of Environmental	U	1
	Science and its multidisciplinary nature.		
2	Comment on the history and origin of environmental	R	1
	protection initiatives and key international conferences.		

3	Identify and classify major types of natural resources	U	1
4	Analyze the developmental issues and their environmental impacts.	An	2
5	Apply principles of environmental ethics to address the issues of equity and disparity.	А	1

		CO NO.
Module 1: Introduction to Environmental Science & Conservation History	15 Hours	1, 2
Definition, scope, and importance of Environmental Science, Mult environmental science; Significance of Environmental Education.	idisciplinary nature of	
Origin of conservation NGOs like WWF, UNEP, etc., Silent Spring International initiatives for environmental protection; Major Environm	-	
Module 2: Natural Resources	15 Hours	3
Introduction to natural resources; Types of natural resources- Renewa resources; Types of natural resources- Forest resources, Water and Resources, Energy Resources		
Module 3: Global Environmental Issues	15 Hours	4
Developmental issues and related impacts such as ecological degradation; environmental pollution; Project Affected People (PAPs). Environmental Challenges and Urbanization: Production and Consumption Perspectives, Industry and Technology Impacts, Economic-Environmental Conflicts Climate Change, Global Warming, Acid Rain, Ozone Depletion, Nuclear Incidents, and Environmental Catastrophes; Case Studies: Consumerism and Waste Management Practices.		
Module 4: Environmental Ethics	15 Hours	5
Aldo Leopold's Land Ethics and Gross National Happiness, Resource consumption patterns and the need for their equitable utilisation; Equity – Disparity in the Northern and Southern countries; Urban-rural equity issues; The need for Gender Equity; Preserving resources for future generations; The rights of animals; The ethical basis of environment education and awareness; The conservation ethic and traditional value systems of India; Anthropocentrism and Ecocentrism		

Mode of	Classroom activities
Transaction	Field activities
	Lab based activities

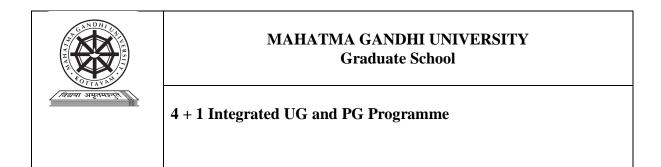
Mode of	Assignment/Quiz/Discussion/Seminar
Assessment	Internal Exam (40%)
	Final exam (70%)

- 1. Basu, M., & Xavier Savarimuthu, S. J. (2017). Fundamentals of environmental studies. Cambridge University Press.
- 2. Chawla, S. (2013). A Textbook of Environmental Studies. McGraw Hill Education (India) Private Limited.
- 3. Chokkan, K.B., Pandya, H. & Raghunathan, H. (eds). 2004. Understanding Environment. Sagar Publication India Pvt. Ltd., New Delhi
- 4. Elliot, D. 2003. Energy, Society & Environment, Technology for a Sustainable Future. Routledge Press.
- 5. Guha, R. 1989. Ecological change and peasant resistance in the Himalaya. Unquiet Woods, Oxford University Press, Delhi.
- 6. Miller, T.G. 2012. Environmental Science. Wadsworth Publishing Co
- National Research Council (NRC). 1996. Linking Science and Technology to Society's Environmental Goals. National Academy Press

H H H H H H H H H H H H H H H H H H H	MAHATMA GANDHI UNIVERSITY Graduate School
विवया अपूनमधन्त	4 + 1 Integrated UG and PG Programme

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Natural disasters			
Course Type	Minor			
Course Level	100-199			
Course Code	MG1DSCUES141			
Course Overview	This course covers an overview of disasters of natural origin. Students will gain an in-depth understanding of various types of disasters, including their physical, social, economic, and environmental dimensions. Through case studies, theoretical frameworks, and practical applications, the course aims to equip students with the knowledge and skills to effectively analyse, mitigate, and respond to natural disaster events.			
Semester		Credit	4	
Total Student Learning Time	Instructional hours for theory 60		Instructional hours for practical/lab work// fieldwork	
Pre-requisite	Basic knowledge about Geolog	y		

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;		
1	Explain the characteristics of natural disasters and understand their respective characteristics and dynamics.	R	1


2	Describe the short-term and long-term impacts of	U	1,2
	disasters on communities, economies, and		
	environments.		
3	Understand emerging challenges of disasters in the	U	2
	contemporary world including climate change		
4	Analyze the factors that contribute to the vulnerability	An	1,2
	of various natural disasters		
5	Understand the historical and contemporary case studies	U	1
	of disasters to identify lessons learned and best practices		

		CO NO.
Module 1: Introduction to Natural Hazards	10 Hours	1, 2
Science and facts of natural hazards, Causal factors and characteristics of natural disasters, major natural hazards across the world, natural hazard profile of India		
Module 2: Water and Climate Related Disasters	15 Hours	1, 2
Cause, effects, types and measurements of Floods, Cyclones, Tornadoes, Hail storm, Hot wave, Cold wave, Snow avalanches, Droughts, Acid rain, Sea erosion, Thunder and lightning		
Module 3: Geologically Related Disasters	15 Hours	1, 2
Geological factors for various disasters, Cause, effects, types and measurements of Landslides, Earthquakes, Mine fires, Groundwater contamination, Volcanic eruptions and Tsunamis		
Module 4: Significant Historical Natural Disasters	20 Hours	3, 4, 5
Introduction to historical disasters, global disaster databases - CRED and EMDAT, Case studies of notable international, national and regional disasters		

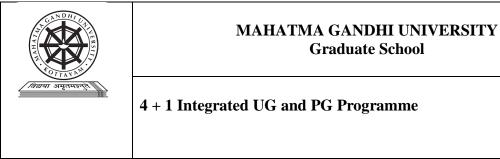
Mode of	Classroom activities			
Transaction	2. Practice safety procedures during natural disasters			
3. In-depth analysis of specific natural disaster events				
	4. Plan and organize study trips local natural disaster affected cites			
Mode of	Continuous Evaluation			
Assessment	Assignment/Quiz/Discussion/Seminar			
	Internal Exam (40%)			
	Final exam (70%)			

Learning Resources 1. Keller E.D., and Blodgett R. H, 2006. Natural Hazards. Pearson Printice Hall

- 2. Natural Hazards, Unnatural Disasters: The Economics of Effective Prevention" by the World Bank and United Nations
- 4. Kapur A., Neeti, Meena, Deepthima, Roshani and Debanjali, Disasters in India Studies. Rawat Publications, New Delhi
- 5. Peduzzi P., Dao H., and Herold C., 2005. Mapping Disastrous Natural Hazards Using Global Datasets Natural Hazards Volume 35, Number 2, 265-289.

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Introduction to Ecosystems			
Course Type	Minor	Minor		
Course Level	100-199			
Course Code	MG2DSCUES121			
Course Overview	This course provides insight into the basics of ecosystems and their processes, including biogeochemical cycles, as well as an overview of various ecosystems of the world, their characteristics, and their significance. It also explains the various ecosystem services and their relevance to human and other well-being.			
Semester		redit	4	
Total Student Learning Time	Instructional hours for theory 45 hrs	Instructional hours for practical/lab work// fieldwork 15		
Pre-requisite	Basic understanding about science studies and affection to nature.	concepts, interest in ecological		

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
	Upon completion of this course, students will be able to;		


1	Understand the basic concepts of ecosystems and their	U	1
	processes		
2	Identify the key components of ecosystems and understand their roles	An, U	1
3	Analyse the threats of various ecosystems of world	An	1
4	Evaluate the various services offered by the ecosystems	Е	1,2

		CO NO.
Module 1: Ecosystems	10 Hours	1, 2
 Ecosystem : Concept , Biotic and Abiotic components; Ecosystem processes – Photosynthesis and decomposition; Food chain, Food web, Ecological pyramids, Trophic structure and levels. Flow of energy, Ecological efficiencies . Concepts of productivity and homeostasis. Biogeochemical cycles - Gaseous and Sedimentary cycles – Carbon, Nitrogen, Sulphur, Phosphorus cycles. Anthropogenic activities and its impacts of biogeochemical cycles. 		
Module 2: Terrestrial ecosystems	12 Hours	1, 2
Terrestrial biomes of the world : Various types of tropical forest ecosystems : Characteristics, distribution, climate; stratification, floral-faunal interactions; Conservation aspects Desert ecosystem: Characteristics, vegetation, adaptations; Savanna woodlands: Temperate ecosystems : Boreal forests, tundra, Case studies : Overview of Forest types in India		
Module 3: Freshwater and Marine ecosystems 15 Hours		
Aquatic biomes of the world Freshwater ecosystems – Lentic water bodies : Pond, Lakes - Types based on origin; based on thermal stratification; Reservoirs. Lotic water bodies: streams, springs, Rivers – abiotic parameters and biotic communities. Marine ecosystems : Coastal zones, Mangroves, Coral reefs, Salt marshes, Intertidal zone, Rocky shore, Lagoons, Sea grass and Kelp forests, Large marine areas, Polar marine environment Wetlands: Freshwater and Marine Case studies : Over view of Aquatic ecosystems of India;		
Module 4: Ecosystem – Significance and Conservation	8 Hours	3, 4, 5
Ecosystem services (Provisioning, Regulating, Cultural, and Supporting); Ecosystem preservation and conservation strategies; Basics of Ecosystem restoration		

Mode of	Classroom activities
Transaction	Library reference and Video screening
	Field activities : Field visits to near by terrestrial and aquatic ecosystems
	Lab based activities : Assessment of primary productivity

Mode of	Quiz, Seminar, Assignment
Assessment	Internal Exam (40%)
	Final exam (70%)

- 1. Odum, E. P. & Barrett, G. W. 2006. Fundamentals of Ecology (Cengage)
- 2. Smith R. L & Smith, T. M. Ecology and Field Biology. Benjamin Cummings/Addition Wesley
- 3. Dash, M. C. & S. P. Dash, Fundamental of Ecology. Tata Mcgraw Hill Publication.
- 4. Singh, J. S., Singh, S. P. & Gupta, S. 2006. Ecology, Environment and Resource Conservation. Anamaya Publications, New Delhi.

School	Graduate School				
Programme	4 + 1 Integrated UG and PG Prog	gramme			
Course Title	Concepts of disaster management	t			
Course Type	Minor				
Course Level	100-199	100-199			
Course Code	MG2DSCUES141				
Course Overview	This course introduces the basic principles and practices of disaster management. Students will explore the various phases of disaster management; mitigation, preparedness, response, and recovery- while gaining insights into hazard assessment, risk analysis, and community resilience. Students will learn to apply theoretical knowledge to real- world scenarios through case studies and practical applications.				
Semester	Cr	edit	4		
Total Student	Instructional hours for theory Instructional hours for practical/lab work// fieldwork				
Learning Time	60		15		
Pre-requisite	Basic knowledge about Geography	1			

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.

	Upon completion of this course, students will be able to;		
1	Explain fundamental concepts and principles of disaster management, including the different phases and their importance.	R	1
2	Understand the mechanisms for effective disaster response.	U	1,2
3	Understanding key principles and phases of disaster management	U	1
4	Perform vulnerability assessments and analyze potential impacts to determine risk levels.	An	1,2
5	Understand the role of international organizations in disaster management.	U	1

		CO NO.
Module 1: Introduction to Disaster Management	10 Hours	1, 2
Introduction to key concepts, terminologies and their complexities (Hazard, vulnerability, Exposure, Risk, Crisis, emergencies, Vulnerab Resilience)	vility, Disasters,	
Module 2: Disaster Management Spectrum	15 Hours	2, 3
The disaster management cycle- Mitigation (structural and non structu Preparedness (planning, training and exercises, Public awareness and c (emergency operations centers, search and rescue operations, incider medical care and shelter management), Recovery (damage assessment rehabilitation)	education), Response nt command system,	
Module 3: Risk Assessment and Vulnerability Analysis	15 Hours	3, 4
Disasters and development, hazard identification, vulnerability assessment, risk analysis, evaluation and mitigation, physic environmental and institutional vulnerability	analysis, exposure cal, socioeconomic,	
Module 4: Disaster Management Administration	20 Hours	3, 4, 5
International disaster management system, international disaster res Management Act, NDMA, NIDM, NDRF, SDMA and DDMA stakeholders in disaster management administration	1	

Mode of	Classroom activities
Transaction	Vulnerability assessment role-play
	Risk matrix analysis
	Disaster mock drill- tabletop exercises
Mode of	Continuous Evaluation
Assessment	Assignment/Quiz/Discussion/Seminar
	Internal Exam (40%)
	Final exam (70%)

- 1. Shaw R and Krishnamurthy R.R., (ed.)2009. Disaster management Global Challenges and Local solutions. University Press, India.
- 2. Disaster Management: A Disaster Manager's Handbook" by Asian Development Bank
- 3. Principles of Emergency Management and Emergency Operations Centers (EOC)" by Michael J. Fagel
- 4. Coppola D. P., 2007.Introduction to International Disaster Management. Elsevier. Butterworth-Heinemann

Syllabus of MDC courses

	MAHATMA GANDHI UNIVERSITY Graduate School
विद्यया अपृतमयम्त	4 + 1 Integrated UG and PG Programme

School	Graduate School				
Programme	4 + 1 Integrated UG and PG I	Programme			
Course Title	Sanitation, Health and Enviro	onment			
Course Type	MDC				
Course Level	100-199				
Course Code	MG2MDCUES101				
Course Overview	techniques, and ecological san impacts of pollutants on organis exposure routes and toxicity test	The course explores sanitation and health issues, waste management techniques, and ecological sanitation methods. It also analyzes the impacts of pollutants on organisms and food contamination, considering exposure routes and toxicity testing. Furthermore, it helps to understand the interplay between sanitation practices, human health, and environmental sustainability.			
Semester	2	Credit	3		
Total Student Learning Time	Instructional hours for theory 45		ctional hours for lab work// fieldwork		

Pre-requisite	Interest	in	public	health	and	environmental	concepts,	including
	sanitatior	1, W	vaste ma	inageme	nt, an	d pollutants.		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
	Upon completion of this course, students will be able to;		
1	Understand the role of sanitation in Public health	U	1
2	Comprehend ecological sanitation principles and their impact on human health and food security.	U	1
3	Analyze the effects of pollutants on organisms and food contamination	An	1,2
4	Compare successful sanitation strategies and understand the health sector's role in sanitation improvement.	Е	1

		CO NO.
Module 1: Sanitation and Health	10 Hours	1
Sanitation and Health- introduction and Current situation, Water and diseases, respiratory infections, under-nutrition; Successful approx strategies; Role of the health sector; Global experience in improv hygiene; Climate change and diseases; Occupational health	aches to sanitation	
Module 2: Waste Management	12 Hours	1, 2
Solid and liquid waste: Types, sources, properties, and impacts; Tre techniques for solid wastes: Thermal and Biological processes; D Landfills – design, operation, and management; Hazardous w Wastewater treatment: an overview; Concept of Zero waste	isposal techniques:	
Module 3: Ecological Sanitation	11 Hours	1, 2,
Conventional sanitation: a linear flow system – its limitations; Eco San closing the loop: concept, goals, and advantages; Eco San for management: Dry Toilets, Composting Toilets. Grey water manage Human Health and Food Security	human night soil	
Module 4: Pollutants and individual organisms	12 Hours	2, 3, 4
Routes and types of exposure to toxic substances; Toxicity of polluta pesticides, radioactive minerals, etc.; Effects of pollutants on ind Contaminants in food; Occupational exposure to toxins; Toxicity from daily life: cosmetics, cleansing agents etc. Toxicity testing	lividual organisms.	

Classroom activities
Field activities
Lab based activities
Assignment/Quiz/Discussion/Seminar
Internal Exam (40%)
Final exam (70%)

- 1. Walker, CH., Hopkin, S.P., Sibly RM., Peakall DB. Principles of Ecotoxicology, Taylor and Francis, New York
- 2. Lippmann, M. (Ed.). (2000). Environmental toxicants: human exposures and their health effects.
- 3. Prabhakar VK. Toxic and Hazardous chemicals, Anmol, New Delhi
- 4. Sarkar, B. (2002). *Heavy metals in the environment*. CRC press.
- 5. Letcher, T., & Vallero, D. A. (Eds.). (2019). *Waste: A handbook for management*. Academic Press.
- 6. Singh, J., & Ramanathan, A. L. (Eds.). (2010). *Solid waste management: present and future challenges*. IK International Pvt Ltd.
- 7. Sinha, B. D., & Menon, P. S. K. (2000). *Environmental sanitation health and panchayati raj*. Concept Publishing Company.
- 8. Rajaram, V., Siddiqui, F. Z., Agrawal, S., & Khan, M. E. (2016). Solid and liquid waste management waste to wealth: Solid and liquid waste management waste to wealth. PHI Learning Pvt. Ltd..

SEMESTER III

MAHATMAGANDHIUNIVERSITY Graduate School

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4+1 Integrated UG and PG Programme			
Course Title	Ecology and Environment			
Course Type	Major			
Course Level	200-299			
Course Code	MG3DSCUEN201			
Course Overview	The course provides an introduction into the basics of Ecology and Environmental Science. The concepts of the different spheres and processes of Environment, ecosystem, population ecology and the interaction of different ecological factors with biotic components are laid out.			
Semester	3	Credit	4	
Total Student Learning Time	Instructional hours for theory 60		Instructional hours for practical/labwork//fieldwork 15	
Pre-requisite	Basic knowledge about Ecological functions			

CO No.	Expected Course Outcome	Taxonomic Level (TL)	PSO No.
	Upon completion of this course, students will be able to;		
1	Explain the concept of ecology and relevance of environmental science	U	1
2	Able to distinguish the structure, organization and processes in various ecosystems	А	1,2
3	Develop a knowledge of the structural and functional aspects of a population as an ecological unit	Ар	2,4
4	Understand and analyse the concept of biological community, changes and interactions within community	U, A	1,2,6
5	Develop skill on applied aspects of ecology including mathematical or conceptual model of population or community dynamics to analyse the various factors of population growth and regulation.		5,7

		CO NO
Module 1: Introduction to Ecological Factors	15 Hours	1,2
Scope and interdisciplinary nature of Environmental Science; Structure and composition (concepts of homosphere and heterosph of atmosphere); hydrosphere- marine water, freshwater, concept and thermocline in temperate lakes; lithosphere - biosphere. H factors, concept of limiting factors. Biogeochemical cycles sedimentary).		
Module 2: Ecosystem functions and processes	15 Hours	2,3
Classification; Biogeographical regions; Biomes; Energy f relations; Ecological pyramids; Productivity and ecological primary and secondary producers. Niche; Speciation; Ecological S Climax communities, ecotone, edge effect; Biological interactions Negative interactions: Mutualism, Proto-cooperation, Co Competition, Amensalism, Parasitism, Predation.		
Module 3: Population Ecology	15 Hours	4
Definition, Structure and Measures. Population growth, Regulation species. Survivability Population genetics. Human population disturbance, population dispersal (migration, immigration and Population structure- Isolation, distribution, population explosis control measures.		
Module 4: Community Ecology and Applied Ecology	15 Hours	4,5
Concepts, Community gradients, Characters of community, Ecologi and climax Community, Organization -interactions between s ecology and adaptation. Estimating abundance, species diversity measures. Taxonomy and E Biomass productivity and estimation techniques		

Mode of Transaction	Classroom activities Field activities
	Lab based activities

Mode of	Continuous Evaluation
Assessment	Assignment/Quiz/Discussion/Seminar
	Internal Exam (40%)
	Final exam (60%)

- 1. Arora S. (2003). Fundamentals of Environmental Biology, Kalyani Publications, New Delhi.
- 2. Cotgreave P. and Forseth I. (2002). Introductory Ecology. Blackwell Science, UK
- 3. Dhaliwal G. S., Sangha G. S. and Raina P. K. (2000) Fundamentals of Environmental Science, Kalyani Publication, India.
- 4. Freedman B. (1995). Environmental Ecology, Academic Press, USA.
- 5. Jackson A. R. W. and Jackson J. M. (2000). Environmental Science The natural environment and human impact, 2nd Edition, Longman Group, UNITed Kingdom.
- 6. Masters G. M. (2007). Introduction to Environmental Science and Engineering, 3rd Edition, Prentice –Hall of India Pvt Ltd, New Delhi.
- 7. Odum E.P. (1993). Fundamentals of Ecolgy, W.B.Saunders Co., USA.
- 8. Rana S.V.S. (2005). Essentials of Ecology and Environmental Science. Prentice –Hall of India Pvt. Ltd. New Delhi
- 9. Townsend C.R., Begon M. and Harper J.L. (2008). Essentials of Ecology, Blackwell Publications, UK.

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School				
Programme	4+ 1 Integrated UG and PG Programme				
Course Title	Environmental Chemistry				
Course Type	Major				
Course Level	200-299	200-299			
Course Code	MG3DSCUEN202				
Course Overview	The course describes the basi environmental processes. It ex- environmental matrices such as various chemical processes invo- the environment.	plains the atmosphere	chemical characteristics of e, water and soil. It explains		
Semester	3	Credit	4		
Total Student	Instructional hours for theory		Instructional hours for practical/lab work//fieldwork		
Learning Time	60		15		
Pre-requisite	Basic knowledge about chemical characteristics of Environmental processes				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Taxonomic Level (TL)	PSO No.
	Upon completion of this course, students will be able to;		
1	Describe the basics of environmental chemistry	UR	1
2	Demonstrate knowledge of chemical and biochemical principles of fundamental environmental processes in air, water, and soil.		1,2,3
3	Describe the chemistry of air, water and soil pollutants	Е	3,5
4	Apply basic chemical concepts to analyse chemical processes involved in different environmental problems (air, water & soil)		4,5,6
5	Describe Chemical and physical factors involved in Fate and transport of pollutants	Ар	3,7

		CO NO
Module1: Man, and environment	15 Hours	1
Definition. Principles and scope of Environmental Science. Cher Environment. Man, and Environment. Water and the hydrospher atmosphere. Energy and cycles of energy, Chemical fate and transpo	e, Air and the	
Module2: Chemistry of the environment - basics	15 Hours	1, 2
Mass and Energy transfer across the various interfaces, material bal Second law of thermodynamics. Heat transfer processes, Chen Chemical equilibria, acid base reaction. Solubility product, solubility water, the carbonate system. Unsaturated and saturated hydrocarbons	nical potential; lity of gases in	
Module3: Atmospheric chemistry	3, 4	
The atmosphere Composition of Air: Classification of elements, che Particles, ions and radicals in the atmosphere. Chemical and photoch in the atmosphere, reactions of atmospheric oxygen. Chemical proces of inorganic and organic particulate matter. Chemistry of Photochemical smog. Energy transfer in atmosphere, Globa microclimate.	nemical reactions ses for formation air pollutants,	
Module4: Aquatic and soil chemistry	15 Hours	3, 4, 5
Fundamentals of aquatic chemistry, The importance of water, The properties of water, gases in water. Concept of DO, BOD, COD, sedimentation, coagulation, filtration, Redox potential. Soil Chemistry - Nature and decomposition of soil, Inorganic and organic components of soil, Acid base and ion exchange reactions in soils, macro and micronutrients in soil, Nitrogen pathways, NPK in soils		

Mode of Transaction	Classroom activities Field activities Lab based activities
Mode of Assessment	Continuous Evaluation Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final exam (60%)

- 1. Manahan Stanley E ., Environmental chemistry, Lewis Publishers London
- 2. Nyle C Brady, Nature and Properties of Soil, Macmillan
- 3. M. N. Rao and H V N Rao, Air Pollution, Mc GRAW HILL
- 4. James Girard, Principles of Environmental Chemistry
- 5. David T. Allen, Green Engineering: Environmentally Conscious Design of Chemical Processes
- 6. Phyllis Buell , Chemistry Fundamentals: An Environmental Perspective (2nd Edition

4+1IntegratedUGandPGProgramme

ENVIRONMENTAL SCIENCE

School	Graduate School	Graduate School		
Programme	4+1 Integrated UG and PG Programme			
Course Title	Environmental Pollution ar	Environmental Pollution and Control		
Course Type	Major			
Course Level	200-299			
Course Code	MG3DSCUEN203	MG3DSCUEN203		
Course Overview	The modules under this course have been designed to improve the familiarity of the students with different pollution problems and the control strategies in three environmental compartments, i.e. air, water and soil. Issues related to noise pollution and their impact on environment and health are dealt with.			
Semester	3	Cre	edit	4
Total Student Learning Time	Instructional hours for theory 60	7	Instructional hours for practical/labwork//fieldwork 15	
Pre-requisite	Basic knowledge about different types of Environmental Pollution			

COURSE OUTCOMES(CO)

CO No.	Expected Course Outcome	Taxonomic Level (TL)	PSO No.
	Upon completion of this course, students will be able to;		
1	Identify and distinguish the sources and types of water, air, and soil pollution.	R	2, 3
2	Articulate knowledge about impact and control measures of water, air, and soil pollution.	U	3
3	Describe environmental analysis for various water, air and soil quality parameters.	Е	3,4
4	Expound the water and waste water treatment	U	5
5	Explain the Fate and transport of pollutants and distinguish the regional and global impact of pollution	А	4, 5
7	Conduct environmental sampling and analysis for monitoring environmental pollution, and implement policies for pollution control	-	4, 6, 7

		CO NO
Module 1: Air Pollution	15 Hours	1, 2
Air Pollution – Definition and Sources - Natural and anthropogenic; Types of Primary and Secondary. Acid rain, Smog-Photochemical and Classical; Ozo Factors affecting air pollution, Transport and diffusion of pollutants. Gas law the behaviour of pollutants in the atmosphere. Indoor air pollution – Types ar pollutants. Effects of pollutants on human beings, plants, animals, materials an Identification of aeroallergens. Air-borne diseases and allergies. Air pollution Noise Pollution and control: Characteristics of noise, sources, Effects of nois Measurement and control	ne depletion. ws governing nd sources of id on climate. n control.	
Module 2: Water Pollution	20 Hours	1, 2, 4
Water Pollution - Types -surface and ground water, Surface water pollution point and nonpoint, Types of pollutants – chemical, physical and biological. Chemical pollutants – inorganic (metals and other elements) and organic (POF and Eutrophication, Organic matter - sources and degradation. Biologic Microbial pollution. Coastal and Marine pollution-Oil spills, Thermal pollution, Impacts of water Management of point and non-point sources of water pollution, water pollu Role of State and Central Pollution Control Boards	Ps); Nutrients al pollutants pollution.	
Module 3: Soil Pollution 10 Hours		1, 2
Soil/sediment Pollution – sources and types, soil as a pollutant, Soil quali Physico-chemical parameters of soil quality, factors affecting pollutants in the texture, pH, redox potential, organic carbon etc.	• •	
Module 4: Environmental Pollution Monitoring	15 Hours	3, 5
Monitoring-online and offline, Environmental sampling and analysis – stag treatment, detection and interpretation), scope and criteria, Sampling – water equipment for air, water and soil sampling. Analysis – types and methods Certified reference materials. Water and soil quality parameters	r, air and soil,	
Module5: Radioactive Pollution	10 Hours	5,7
Radioactivity in the environment, Radioactive Pollution: Radionuclides- sou radiation, Radioactive fallout. Ecological risks from radiation, effects on humans, exposure standards. Control measures: radioactive waste treatment.	rces, types of	

Mode of Transaction	Classroom activities Field activities Lab-based activities
Mode of Assessment	Continuous Evaluation Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final exam (60%)

1. Baxter, M. (2013). Social and Ethical Aspects of Radiation Risk Management, Vol.19, Editors: Deborah Oughton Sven Hansson. Elsevier (Pub.). Series: Radioactivity in the Environment.

2. Brady, N.C. (1996). The Nature and Properties of Soil, 10th Ed., Prentice Hall of India Pvt. Ltd.

3. Cherimisinoff, N.P. (2001). Biotechnology for Waste and Wastewater Treatment, Prentice Hall of India Pvt. Ltd.

4. Helmut Meuser (2010). Contaminated Urban Soils, Springer.

5. Luyben, W. L. Process Modeling Simulation and Controls for Chemical Engineers, Mc. Graw Hill Book Co.

6. Mahajan, S.P. (1998). Pollution control in process industries, Tata McGraw Hill, New Delhi.

7. Masters, G.M. (1998). Introduction to Environmental Engineering and Science 3rd ed. Prentice Hall of India Pvt. Ltd.

8. Metcalf and Eddy (2003). Wastewater engineering: Treatment, Disposal, Reuse, 4th edition. Tata McGraw Hill, New Delhi

4+1IntegratedUGandPGProgramme

ENVIRONMENTAL SCIENCE

School Name	Graduate School		
Programme	4 + 1 Integrated UG and PG Programme		
Course Name	Environmental Pollution		
Type of Course	Minor		
Course Level	200 - 299		
Course Code	MG3DSCUES221		
Course Overview	water, soil etc. and types contaminants. The course	and sources of e explains the in	nvironmental pollution like air, pollutants including emerging iteraction and movement of ill also describe the control measures
Semester	3	Credit	4
Total Student Learning Time (SLT)	Instructional hours for theory		Instructional hours for practical/lab work/ fieldwork
	45		
Pre-requisite			

CO No.	At the end of the course, the student will be able to:	Taxonomic Level (TL)	PSO
1.	Identify and distinguish the sources and types of water, air, and soil pollution.	R	1,3
2	Articulate knowledge about impact and control measures of water, air, and soil pollution.	U	2,5
3	Explain the Fate and transport of pollutants and distinguish the regional and global impact of pollution	A	2,3,7
4	Describe Radioactive pollution and radioactive waste management methods	U	5
5	Conduct environmental sampling and analysis	Ap	3,5

		CO NO
Module 1: Air Pollution	15 Hours	1, 2
Air Pollution – Definition and Sources - Natural and anthropogenic; Types of Pol and Secondary; Acid rain, Smog-Photochemical and Classical; Ozone depletion	lutants- Primary	
Factors affecting air pollution, Transport, and diffusion of pollutants. Gas laws behaviour of pollutants in the atmosphere.	governing the	
Indoor air pollution – Types and sources of pollutants		
Effects of pollutants on human beings, plants, animals, materials and climate. I aeroallergens. Air-borne diseases and allergies. Air pollution control	dentification of	
Noise Pollution and Control: Characteristics of noise, sources, Effects of no Measurement and Control	ise, Standards,	
Module 2: Water Pollution	15 Hours	1, 2
Water Pollution - Types -surface and groundwater, Surface water pollution -sour nonpoint, Types of pollutants – chemical, physical and biological.	rces – point and	
Chemical pollutants – inorganic (metals and other elements) and organic (POPs Eutrophication, Organic matter - sources and degradation. Biological polluta pollution		
Groundwater pollution – sources and types of pollutants, Geological and anthropogenic pollutants in groundwater – Arsenic, Fluoride, Sali intrusion, etc.	ne water	
Movements of contaminants in groundwater Coastal and Marine pollution -Oil spills, Thermal pollution,		
Impacts of water pollution -Heavy metals and other POPs in aquatic systems - cyc interactions, Fate and transport of pollutants- factors affecting, Global oceanic tra pollutants		
Management of point and non-point sources of water pollution, water pollution co State and Central Pollution Control Boards	ontrol, Role of	
Module 3: Soil Pollution	8 Hours	1, 2
Soil/sediment Pollution – sources and types, soil as a pollutant, Soil quality		
parameters- physico-chemical parameters of soil quality, factors affecting pollutants in the sediments – texture, pH, redox potential, organic carbon etc.		
Sedimentation rate and contamination profile, sediment pollution indices		
Soil Pollution Control. Industrial waste effluents and heavy metals and their interactions with soil components. Soil microorganisms and their functions,		

Degradation of different insecticides, fungicides and weedicides in soil. Different kinds of synthetic fertilizers (NP & K) and their interactions with components of soil.		
Environmental Pollution monitoring	12 Hours	3, 5
Monitoring online and offline; Environmental sampling and analysis – stag treatment, detection and interpretation), scope and criteria; Sampling – water equipment for air, water and soil sampling. Analysis – types and methods, Specia reference materials,	, air and soil,	
Water quality parameters-physical, chemical and biological, analysis, Water qua Tracers – dyes and isotopes in pollution monitoring	ality standards,	
Ambient Air quality Monitoring, Air quality Standards-ambient and emission, Air equipment. Methods of monitoring and control of air pollution SO ₂ , NO, CO, CO ₂ SPMPM2.5 & PM 10. Air quality index. Noise measurement		
Soil/sediment sampling and monitoring. Soil quality standards.		
Methods for assessing pollutant contamination profile in the sediments – chronolog detection	y and pollutant	
Radioactive Pollution	6	4
Radioactivity in the environment, Radioactive Pollution: Radionuclides- sources, types of radiation, Radioactive fall Ecological risks from radiation, effects on humans, exposure standards. Control measures: radioactive waste treatment.	out,	
Emerging contaminants	4	3, 5
Emerging contaminants – definition, types and sources		
Sources and health impacts of PPCPs, POPS, PCCDS, PFAs, Dioxins, PCBs Plastics pollution in the freshwater and marine ecosystems		
Natural disasters and Pollution		

Teaching and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning			
Learning Approach	(Video), Interactive Instruction:, Active co-operative learning, Seminars, Group Assignments Authentic learning, , Library work and Group discussion,			
	esentation by individual student/ Group representative			
Assessment Types	 Continuous Internal Assessment (CIA) Internal test Review of Book /Article Seminar Presentation Field visit report 			
	2. Semester End examination			

- 1. Baxter, M. (2013). Social and Ethical Aspects of Radiation Risk Management, Vol.19, Editors: Deborah Oughton Sven Hansson. Elsevier (Pub.). Series: Radioactivity in the Environment.
- Brady, N.C. (1996). The Nature and Properties of Soil, 10th Ed., Prentice Hall of India Pvt. Ltd.
- 3. Cherimisinoff, N.P. (2001). Biotechnology for Waste and wastewater treatment, Prentice Hall of India Pvt. Ltd.
- 4. Helmut Meuser (2010).Contaminated Urban Soils, Springer.
- 5. Luyben, W. L. Process Modeling Simulation and Controls for Chemical Engineers, Mc. Graw Hill Book Co.
- 6. Mahajan, S.P. (1998). Pollution control in process industries, Tata McGraw Hill, New Delhi.
- Masters, G.M. (1998). Introduction to Environmental Engineering and Science 3rd ed. Prentice Hall of India Pvt. Ltd.
- Metcalf and Eddy (2003).Wastewater engineering: Treatment, Disposal, Reuse, 4th edition. Tata McGraw Hill, New Delhi.
- 9. Miller R.W. and Donalvee, R.L. (1997). Soils in Our Environment, 7th Ed, Prentice Hall of India Pvt. Ltd.
- 10. Nathanson, J.A. (2003). Basic Environmental Technology, 4th Ed., Prentice Hall of India Pvt. Ltd.
- 11. Parsons, S.A. and Jefferson, B. (2006). Introduction to potable water treatment processes, Blackwell Publishing.
- 12. Poonia and Sharma (2018)., Environmental Engineering, Khanna Books, ISBN: 9789386173577, 9386173573.
- Rao, C.S. (1995). Environmental Pollution Control Engineering, 3rd Ed., Wiley Eastern Ltd.
 New Age International Pvt. Ltd.
- 14. Sharma, B.K. (2001). Water Pollution. Goel Pub. House. Meerut.
- 15. Wadhwa, Y. (2009). Air Pollution: Causes and Control. Cyber Tech Publications, New Delhi

Suggested readings

- 1. http://echo2.epfl.ch/VICAIRE/mod_2/chapt_9/main.htm
- 2. http://www.bis.org.in/
- 3. http://www.science.uwaterloo.ca/~cchieh/cact/applychem/watertreatment.html
- 4. http://www.sciencedirect.com/science/journal/02697491?sdc=1
- 5. http://www.water-pollution.org.uk/types.html
- 6. https://link.springer.com/journal/11270
- 7. https://www.journals.elsevier.com/atmospheric-pollution-research/
- 8. https://www.journals.elsevier.com/environmental-pollution/

4+1IntegratedUGandPGProgramme

ENVIRONMENTAL SCIENCE

School Name	Graduate School				
Programme	4 + 1 Integrated UG an	d PG Progra	mme		
Course Name	Sustainable Developme	Sustainable Development			
Type of Course	MDC				
Course Level	200 - 299				
Course Code	MG3MDCUES201	MG3MDCUES201			
Course Overview	This course explores the development. Students w environmental, social, ar achieving local, national	vill understand	l the interc ystems an	d learn strategies for	
Semester	3	Credi	t	3	
Total Student Learning Time (SLT)	Instructional hours for	theory	Instructional hours for practic work/ fieldwork		
	45				
Pre-requisite			L		

CO No.	At the end of the course, the student will be able to:	Taxonomic Level (TL)	PSO
1.	Explain the basics of concepts and theories of sustainable development	R, U	1,7
2	Distinguish various problems which threaten sustainability	A	2,6
3.	Identify methods, tools, and techniques for sustainability	R	5,6

4	Analyse the role of international organizations, governments, and communities in advancing sustainable development.	A	6,7
5	Apply sustainability frameworks like the UN Sustainable Development Goals (SDGs) in real-world scenarios.	Ар	4,6,7

		CO NO
Module 1: Sustainability and Sustainable Development	10 Hours	1, 2
From problems to crises- Depletion of resources and environmental degra Sustainable Development: History, Strategies and Policies. Sustainable human development index, Sustainability pillars - Key principles and dimensions of economic, social and environmental su Gandhian model of sustainable development; UN Sustainable development achievements; Global challenges in sustainable development	stainability;	
Module 2: Sustainable Consumption	10 Hours	2
Definition, importance, relevance for developing countries - Difference be Consumption from Sustainable Development and Sustainable Production - key issues - UN Guidelin consumption Tools; Sustainable living and values		
Module 3: Sustainable Development in Practice	7 Hours	2, 3
Case studies - Successful sustainability initiatives; Policy and Sustainability; Corporate social responsibility (CSR); Sustainable Urban		
Module 4: Measuring and Monitoring Sustainability	8 Hours	3, 4, 5
Sustainability frameworks and standards – UNSDG, GRI, SASB, ISS CSRD, BRSR etc. Environmental Impact Assessment for Sustainable Development- EMP-		
Module 5: Education for Environment and Sustainable	10 Hours	4, 5
Development Environmental education; Education for sustainable development; sustainable consumption; eco–school; Future trends in sustainable development	Education for	

Teaching and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning			
Learning Approach	(Video), interactive Instruction: Active co-operative learning, Seminars, Group			
	Assignments Authentic learning, Library work and Group discussion,			
	Presentation by individual student/ Group representative.			
Assessment Types	1. Continuous Internal Assessment (CIA)			
	Internal test			
	Group Presentations			
	Seminar Presentation			
	2. Semester End examination			

- 1. Bowers, J. (1997). Sustainability and Environmental Economics. Longman, Singapore.
- 2. Brown, L. R. (2001). Eco-Economy. Earth Scan Publications, London.
- 3. Hackett, S. C. (1998). Environmental and Natural Resource Economics. M. E. Sharpe, London
- 4. Hanley, Nick; Spash, Clive L., (1993). Cost-benefit analysis and the environment, Edward Elgar.
- 5. Heal. G. M. (1998). —Interpreting Sustainability∥ in Sustainability: Dynamics & Uncertainty, Kluwer Academic Publ., 34-44
- Jepma C.J. & M. Munasinghe, (1998). Climate Change Policy Facts, Issues and Analysis, Cambridge University Press, – Chapters 1 & 8. 110-159
- 7. Karpagam, M. (1991). Environmental Economics. Sterling Pub., New Delhi
- Mohan Munasinghe, (1996). —Sustainable Energy Development: Issues and Policyl in Kleindorfor P. R. et. al (ed.) Energy, Environment and Economy: Asian Perspective, Edward Elgar, 45-65.
- 9. Muralivallabhan T. V., Dimensions of Sustainable Economic Development, Unma Pub., 2005
- Murty, M.N.; James, A.J. & Misra, Smita, (1999). Economics of water pollution: the Indian experience, Oxford University Press.
- Natalia Mirovitskaya and William Ascher., Guide to Sustainable Development and Environmental policy., Duke University Press, London, 2001.
- 12. Owen, L and Unwin, T. (Ed.). (1997). Environment Management. Backwell Pub., USA.
- 13. Pearce, David; Barbara, Edward, (2000). Blueprint for a sustainable economy, Earthscan, Publications Ltd.
- 14. Perch, David W.; Warford, Jeremy J., (1993). World without end: economics, environment, and sustainable development, Oxford University Press,
- 15. Rajyalakshmi V., Environment and sustainable development ,A.P.H Pub, New Delhi
- 16. Rosencranz, A., Divan, S. and Noble, M. L. (1992). Environmental Law and Policy in India cases, materials and statutes. Tripathi Pvt. Ltd., Bombay.
- 17. Savitha Singh, Global Concern with Environmental crisis and Gandhi's Vision (1999), APH Publishing Corporation, Delhi.
- 18. Schumacher, E. F. (1990). Small is Beautiful. Rupai & Co. Pub., New Delhi
- 19. Shankar V. (Ed) (2000): Environmental Economics, Oxford University, Press, New Delhi.
- 20. Titanberg, T. (1998). Environmental Economics and Policy (2nd Edn.). Addison Wesley Publishers.
- 21. Van den Bergh, Jereon C.J.M., (1996). Ecological economics and sustainable development: theory, methods and applications, Edward Elgar, 1996.

MAHATMAGANDHIUNIVERSITY Graduate School

4+1IntegratedUGandPGProgramme

ENVIRONMENTAL SCIENCE

School Name	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Name	Fundamentals of Disa	ster Managen	ient	
Type of Course	MDC			
Course Level	200 - 299			
Course Code	MG3MDCUES202			
Course Overview	The course deals with the environmental constrain management strategies	nts. The course	also elaborate	-
Semester	3	Cre	edit	3
Total Student Learning Time (SLT)	Instructional hours for theory Work//fieldwo			
	45			
Pre-requisite				

CO No.	At the end of the course, the student will be able to:	Taxonomic Level (TL)	PSO
1.	Explain the relation between Earth's processes and disasters	U	1,7
2	Distinguish various types and causative factors of disasters	An	2,3
3.	Illustrate the key concepts of disaster management	U	5,7
4	Analyse the International disaster management system	An	6,7
5	Assess the disaster management strategies in India	Е	4,5

		CO NO
Module 1: Environment and Disasters	10 Hours	1
Science and Facts of Natural Hazards. Earth's processes as disasters: internal and external Causal factors and characteristics of disasters. Climate change and Disasters	<u> </u>	
Module 2: Types and Classification of Disasters	10 Hours	2
Natural Disasters: Meteorological disasters, Geological disasters,		
Biological disasters Anthropogenic Disasters: Chemical, Industrial and Nuclear related dis Accident-related Disasters	asters,	
Module 3: Disaster Management Concepts	8 Hours	3
Introduction to key concepts, terminologies and their complexities; Ha	azard,	
vulnerability, Exposure, Risk, Crisis, emergencies, Vulnerability, Disa	asters,	
Resilience		
Disaster management Spectrum and its components		
Scope of DM and Disaster Management Cycle		
Module 4: International Disaster Management System	10 Hours	4
Organisations, bodies and Finance. International Strategies and Functi United Nations in Disaster Management. International Disaster Management Support System. Unified response Mapping Disasters using global datasets. National and internation networks and inventories	strategy.	
Module 5: Disaster Management in the Indian Context	7 Hours	5
Major Disasters in India. National Vulnerability profile National Disaster Management Hierarchy and Institutionalisation National Disaster Decision support system. Technological application research organisations. Challenges of disasters in India	s. Role of	

Teaching and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning
Learning Approach	(Video), Interactive Instruction, Active co-operative learning, Seminars, Group Assignments Authentic learning, Library work and Group discussion, Presentation by individual student/ Group representative; Field work and field visits
Assessment Types	 Continuous Internal Assessment (CIA) Internal test Review of Book /Article Seminar Presentation Field visit report Semester End examination

- Coppola D. P., 2007.Introduction to International Disaster Management. Elsevier Butterworth Heinemann
- 2. Peduzzi P., Dao H., and Herold C., 2005. Mapping Disastrous Natural Hazards Using Global Datasets Natural Hazards Volume 35, Number 2, 265-289,
- 3. Shaw R and Krishnamurthy R.R., (ed.) 2009. Disaster management Global Challenges and Local solutions. University Press, India
- 4. Keller E.D., and Blodgett R. H, 2006.Natural Hazards. Pearson Printice Hall
- 5. Kapur A., Neeti, Meena, Deepthima, Roshani and Debanjali, Disasters in India Studies of Grim Reality. Rawat Publications, New Delhi

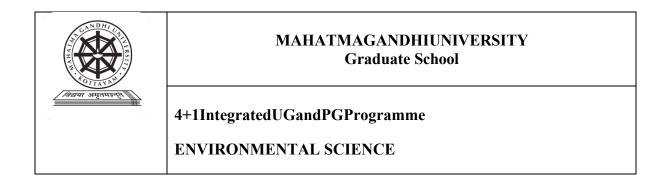
4+1IntegratedUGandPGProgramme

ENVIRONMENTAL SCIENCE

School Name	Graduate School				
Programme	4 + 1 Integrated UG an	4 + 1 Integrated UG and PG Programme			
Course Name	Climate Change				
Type of Course	MDC				
Course Level	200 - 299				
Course Code	MG3MDCUES203				
Course Overview	This course is designed t including the drivers, im	•	•	vive idea on climate change ategies.	
Semester	3	Credi	t	3	
Total Student Learning Time (SLT)	Instructional hours for theory Instructional hours for practical/ work//fieldwork			-	
	45				
Pre-requisite			1		

CO No.	At the end of the course, the student will be able to:	Taxonomic Level (TL)	PSO
1.	Describe the basics of Climate Change and explains the changes occurred so far and prediction of the future changes	U, R	1,7
2	Explain the causes of climate change and analyses the impacts of climate change	U,R,A	2,3
3.	Explain various procedures of inventorying the greenhouse gas emissions (GHG).	U,A,E	3,5
4	Evaluate long term mitigation pathways.	А	4,6

5	Explain various climate change adaptation methods, integrated natural resource management systems; evaluate various information systems including early warning systems.	U,A,R	2,5
6	Explain the global action and governance for climate change mitigation	U, R,C	6,7
7	Describe various technical and financial aids for climate change mitigation and adaptation	U	6, 5


		CO NO
Module 1: Basic definitions	5 Hours	1, 2
Climate and weather; climate change; greenhouse gases; radiative for potential	cing; warming	
Climate modelling; global and regional circulation models; IPCC modelling	scenarios.	
Module 2: Observed and projected changes in the climate system	5 Hours	1, 2
Land surface temperature; ocean surface temperature; precipitation; cryosph		
Greenhouse gas (GHG) concentrations (CO_2 and non- $CO2$ gases); and exercise	streme climatic	
Module 3: Drivers of climate change	7 Hours	3
Natural and anthropogenic radioactive forcing; solar irradiance; aerosols, wa	ater vapour and	
clouds; volcanic eruption	-	
GHG emissions from energy, industries, and transport; and gross and net	emissions from	
agriculture, forestry and other land use.		
Module 4: Impacts of climate change	8 Hours	4
Physical systems (Glaciers, snow, ice and/or permafrost; Rivers, lakes,	floods and/or	
drought; Coastal erosion and/or sea level effects)		
Biological systems (Terrestrial ecosystems; aquatic ecosystems); Human	and managed	
systems (Food production; Livelihoods, health and/or economics)		
Module 5: Greenhouse gas inventorying	7 Hours	5
IPCC guidelines on national greenhouse gas inventorying; general guidance	e and reporting;	
guidance specific to energy		
Industrial processes and product use (IPPU), agriculture, forestry and	other land use	
(AFOLU), and waste; activity data		
Emission factors; key categories; tiered approach; stock-difference and gain		
principles of reporting; measurement, reporting and verification (MRV) syst		< -
Module 6: Climate change mitigation	7 Hours	6,7
Decarbonising energy production; use of clean energy and enhancing the en	ergy efficiency	
in industries, transport, and buildings; carbon dioxide storage and capture		
Bioeconomy or low carbon economy; enhancing the carbon sequestration cap	-	
and land use; climate-smart agriculture; REDD+, long-term mitigation pathy	•	
Module 7: Climate change adaptation	6 Hours	6,7

Social, ecological asset and infrastructure development Technological process optimisation; integrated natural resources management; institutional, educational and behavioural change or reinforcement Financial services, including risk transfer and information systems to support early warning and proactive planning.

Teaching and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning
Learning Approach	(Video), interactive Instruction: Active co-operative learning, Seminars, Group
	Assignments Authentic learning, Library work and Group discussion,
	Presentation by individual student/ Group representative.
Assessment Types	Continuous Internal Assessment (CIA)
	Assignments
	Seminar Presentation on selected topics
	• Quiz
	Class tests
	Semester End examination

- 1. Angelsen, A., Brockhaus, M., Sunderlin, W.D., &Verchot, L.V. (2012). Analysing REDD+: Challenges and choices. Centre for International Forestry Research (CIFOR). Bogor, Indonesia.426p.
- 2. Bonan, G.B. (2008). Forests and Climate Change: Forcing's, Feedbacks, and the Climate Benefits of Forests. *Science*, *320*, 1444-1449.
- 3. *Ecosystem Marketplace (2015). Ahead of the Curve: State of the Voluntary Carbon Markets 2015*, Forest Trends, Washington DC, United States. pp 55.
- 4. IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., and Buendia L., Miwa K., Ngara T. and Tanabe K. (Eds) .Published: IGES, Japan.
- 5. IPCC (2008) 2006 IPCC Guidelines for National Greenhouse Gas Inventories A primer, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (Eds).Published: IGES, Japan.
- IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- IPCC (2014) Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
- 8. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva, Switzerland, 151 pp.

- IPCC (2014) Summary for Policymakers, In: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer,O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B.Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- 10. Intergovernmental Panel on Climate Change. (2023). *Climate Change 2023: Synthesis Report*.
- Lenton, T., M., Held, H., Kriegler, E., Hall Jim, W., Lucht, W., Rahmstorf, S., &Schellnhuber Hans, J. (2008). Tipping elements in the Earth's climate system. *Proceedings of the National Academy* of Sciences of the United States of America, 105, 1786-1793.
- 12. Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., & Ackerly, D.D. (2009). The velocity of climate change. *Nature*, *462*, 1052-1055.
- 13. Pal, J.S., & Eltahir, E.A.B. (2016). Future temperature in southwest Asia projected to exceed a threshold for human adaptability. *Nature Clim. Change*, *6*, 197-200.
- 14. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. *Nature*, 421, 37-42.
- Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S., &Imeson, A. (2008). Attributing physical and biological impacts to anthropogenic climate change. *Nature*, 453, 353357.
- 16. Scheffran, J., Brzoska, M., Kominek, J., Link, P.M., & Schilling, J. (2012). Climate Change and Violent Conflict. *Science*, *336*, 869-871.
- Shindell, D., Kuylenstierna, J.C.I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S.C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K., Oanh, N.T.K., Milly, G., Williams, M., Demkine, V., & Fowler, D. (2012). Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. *Science*, 335, 183-189.
- Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Townsend Peterson, A., Phillips, O.L., & Williams, S.E. (2004). Extinction risk from climate change. *Nature*, 427, 145-148.

	global frameworks for ca reducing emissions and a	arbon quantifi	cation and	develop strategies for
Course Overview	The course aims to provide learners with the skills and knowledge necessary to calculate, analyse, and report carbon footprints for organizations, products, and services. Students will understand the principles, methodologies, and			
Course Code	MG3VACUES201			
Course Level	200 - 299			
Type of Course	VAC	., 515		
Programme Course Name	4 + 1 Integrated UG an Carbon Footprint Anal	_	mme	
School Name	Graduate School			

CO No.	At the end of the course, the student will be able to:	Taxonomic Level (TL)	PSO
1.	Explain the science of climate change and the role of greenhouse gases in global warming.	U	1,7
2	Understand global frameworks and national policies driving carbon footprinting and emissions reduction.	U	6,7
3.	Apply principles and techniques for carbon quantification, including setting organizational boundaries and inventorying emissions.	Ар	3,5

4	Evaluate and report carbon data effectively, adhering to global standards.	Е	4,6
5	Develop and implement strategies for emissions reduction and align them with Net Zero goals.	С	4,5,6

		CO NO
Module 1: Introduction to Carbon Footprint Analysis	8 Hours	1, 2
Overview of climate change science and mechanisms;		
Greenhouse gases (GHGs) and their global warming potentials;		
Impacts of climate change on businesses and supply chains;		
Key terminologies: carbon neutrality, sources/sinks, offsetting, Net Zero, emi	ssions	
reduction/removals, Scopes 1-4		
Module 2: Drivers for Carbon Footprinting	10 Hours	2, 3
Global frameworks: UNFCCC, IPCC, Paris Agreement, CoPs and Scient	ce-Based Targets	
(SBTi).		
National policies and mechanisms: NDCs, CDM, Committee on Climate Cl	nange (CCC), UK	
Net Zero Strategy, carbon budgets, and emissions trading.		
Interrelationship between climate change and sustainability frameworks - U	JNSDG, GRI etc.	
Stakeholder and supply chain pressures on organizations.		
Module 3: Carbon Quantification Standards and Schemes	10 Hours	3
Overview of key frameworks and standards: GHG Protocol, ISO 14064, CDF)	
UK regulatory schemes - SECR, ESOS.		
Sector-specific codes and standards - BRC, GHG Protocol guides		
Differences between organizational, product, and project quantification.		
Module 4: Principles and Techniques of Carbon Footprinting	8 Hours	4
Principles: relevance, completeness, consistency, transparency, and accuracy		
Developing a foot printing strategy: organisational boundaries and GHG inve	ntory.	
Understanding GHG Scopes 1-3 and emerging Scope 4 (avoided emissions).		
Methods for calculating emissions; activity data, emission factors, and Scope	e 3 data hierarchy.	
Managing data quality and ensuring year-on-year consistency.		
Module 5: Communicating Carbon Data	9 Hours	4,5
Effective internal and external reporting methods.		
Reporting frameworks: ISO 14001, CDP, SECR.		
Using normalized data and financial arguments (ROI, life-cycle costing).		
Importance of verification and transparency in communication.		
The role of carbon footprints in emissions reduction and transition planning.		

Teaching and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning			
Learning Approach	(Video), interactive Instruction: Active co-operative learning, Seminars, Group			
	Assignments Authentic learning, Library work and Group discussion,			
	Presentation by individual student/ Group representative.			
Assessment Types	1. Continuous Internal Assessment (CIA)			
	Internal test			
	Group Presentations			
	Seminar Presentation			
	2. Semester End examination			

- 1. AccountAbility. (2018). AA1000 Assurance Standard (AA1000AS v3). AccountAbility. https://www.accountability.org
- Carbon Disclosure Project. (2022). CDP Climate Change Reporting Guidelines. CDP. <u>https://www.cdp.net</u>
- 3. CDP. (2022). *CDP Guidance for Companies: Climate change reporting framework*. https://www.cdp.net/en/guidance
- 4. Committee on Climate Change. (2020). *The Sixth Carbon Budget: The UK's path to Net Zero*. https://www.theccc.org.uk/publication/sixth-carbon-budget/
- GHG Protocol. (2004). The Greenhouse Gas Protocol: A corporate accounting and reporting standard (Revised Edition). World Resources Institute and World Business Council for Sustainable Development. https://ghgprotocol.org/corporate-standard
- Global Sustainability Standards Board. (2016). *GRI 305: Emissions 2016*. Global Reporting Initiative. <u>https://www.globalreporting.org</u>
- Institute of Environmental Management and Assessment (IEMA). (2023). Pathways to Net Zero Course Resources. IEMA. <u>https://www.iema.net</u>
- Intergovernmental Panel on Climate Change. (2023). Climate Change 2023: Synthesis Report. <u>https://www.ipcc.ch/report/ar6/syr/</u>
- International Integrated Reporting Council. (2021). *The International <IR> Framework*. Value Reporting Foundation. <u>https://integratedreporting.org</u>
- International Organization for Standardization. (2016). ISO 14001:2015: Environmental management systems — Requirements with guidance for use. https://www.iso.org/standard/60857.html
- 11. International Organization for Standardization. (2018). ISO 14064-1:2018: Greenhouse gases

 Part 1: Specification with guidance at the organization level for quantification and
 reporting of greenhouse gas emissions and removals.
 https://www.iso.org/standard/66453.html
- 12. International Organization for Standardization. (2018). *ISO 26000:2010: Guidance on social responsibility*. https://www.iso.org/standard/42546.html

- 13. Principles for Responsible Investment. (2021). *PRI Reporting Framework 2021*. Principles for Responsible Investment. <u>https://www.unpri.org</u>
- 14. Science Based Targets Initiative. (2021). Foundations for science-based net-zero target setting in the corporate sector. https://sciencebasedtargets.org/resources/files/Net-Zero-Foundations-paper.pdf
- 15. Sustainability Accounting Standards Board. (2021). SASB Standards: Industry-specific standards for sustainability disclosure. Value Reporting Foundation. <u>https://www.sasb.org</u>
- 16. Task Force on Climate-related Financial Disclosures. (2017). Final report: Recommendations of the Task Force on Climate-related Financial Disclosures. Financial Stability Board. <u>https://www.fsb-tcfd.org</u>
- 17. United Nations Framework Convention on Climate Change. (2015). *The Paris Agreement*. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
- United Nations Global Compact. (2021). Communication on Progress (CoP) reporting guidelines. <u>https://www.unglobalcompact.org</u>
- United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. <u>https://sdgs.un.org/2030agenda</u> Global Reporting Initiative. (2021). GRI Standards: Consolidated set of GRI sustainability reporting standards. Global Reporting Initiative. <u>https://www.globalreporting.org</u>

SEMESTER IV

MAHATMAGANDHIUNIVERSITY Graduate School 4+1Integrated UG and PG Programme ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4+ 1 Integrated UG and PG P	rogramme		
Course Title	Environmental Monitoring and	d Assessment		
Course Type	Major			
Course Level	200-299			
Course Code	MG4DSCUEN201	MG4DSCUEN201		
Course Overview	The course is directed at measuring, modeling and assessing the parameters of environmental quality for the purpose of environmental risk assessment. The course introduces the concept of environmental fate and transport and the methods to apply them in environmental risk assessment. The course also discusses the monitoring methods in the context of environmental fate and transport.			
Semester	4	Credit	4	
Total Student	Instructional hours for theory		ctional hours for labwork//fieldwork	
Learning Time	60		15	
Pre-requisite	Basic knowledge of Environmental samples			

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Taxonomic Level (TL)	PSO No.
1	Ability to demonstrate sound understanding of analytical techniques applied in environmental analyses	U	2
2	Ability to deal with QA/QC of analytical protocols	А	2,3
3	Ability to demonstrate sound understanding of analytical techniques applied in environmental analyses.	U, A	4
4	Building the foundation for understanding Remote Sensing and Geographic Information System (RS-GIS) as a powerful tool for geospatial analysis.	1	5

		CO NO
Module1: Environmental Monitoring	15 Hours	1, 3
What is environmental quality? Quality of environment for life of Advantages of Environmental Monitoring, Deterioration of envir with reference to anthropogenic impact; Methods of assessment quality and understanding of analytical techniques in environmentat term studies/surveys; Rapid assessment; Continuous short- and long	ronmental quality of environmental Il analyses; Short-	
Module2: Pollution monitoring -Strategies and Procedures	15 Hours	1,2
Monitoring online and offline; Environmental sampling and (sampling, treatment, detection and interpretation), scope and cr water, air and soil, equipment for air, water and soil sampling. As methods, Speciation, Certified reference materials.	riteria; Sampling –	
Module3: Pollution monitoring parameters	15 Hours	1,3
 Water quality parameters- physical, chemical and biological anal standards; Tracers – dyes and isotopes in pollution monitoring; A Monitoring; Air quality standards- ambient and emission, and Air Sa Methods of monitoring and controlling air pollution SO2, NO, CO, PM2.5 & PM 10. Air quality index. Soil/sediment sampling and monitoring. soil quality standards. Methol pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology and pollutant contamination profile in the sediments – chronology pollutant contamination pollutan	mbient Air Quality ampling equipment. CO2, Ozone, SPM- hods for assessing	
Module4: Sample Analysis	15 Hours	1,3,4
 Water Analysis- Colour, turbidity, conductivity, TDS, TSS, TS, pH chloride, salinity, hardness, DO, BOD. Analysis of COD, S Potassium, Iron . Nutrient analysis (Nitrite, Nitrate, TN, Phosphate), metals in water Soil Analysis- Physical (Texture, Bulk density, moisture cont parameters (pH, OC/OM, EC), Available Nitrogen, Total N Phosphorous, Available potassium, Trace metals Air quality -Ambient Gaseous pollutant analysis – SOx, NO particulate monitoring – SPM, RPM. Online monitoring of ambient 	Sulphate, Sulphide, Total and dissolved ent) and chemical itrogen, Available x, CO. Ambient	

Mode of Transaction	Classroom activities Field activities
	Lab based activities

Mode of	Continuous Evaluation	
Assessment	Assignment/Quiz/Discussion/Seminar	
Internal Exam (40%)		
	Final exam (60%)	

- 1. D. P. Lawrence (2003) Environmental Impact Assessment: Practical Solutions to Recurrent Problems, John Wiley and Sons, New Delhi.
- 2. APHA (1995). Standard methods for the examination of water and wastewater. 19th edition American Public Health Association, Washington, DC
- 3. Abbasi S A, Water quality sampling and analysis, Discovery Publishing New Delhi
- 4. Maiti, S.K. (2003) Handbook of methods in environmental studies, Vol. 2: Air, noise, soil, overburden, solid waste and ecology. ABD Publishers, Jaipur

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4+ 1 Integrated UG and PG F	rogramme		
Course Title	Biodiversity & Conservatio	n biology		
Course Type	Major			
Course Level	200-299	200-299		
Course Code	MG4DSCUEN202			
Course Overview	This course allows the students to learn the fundamentals of biodiversity and conservation biology. In environmental Science, biodiversity conservation is an important topic due to extinction and loss of biodiversity due to human activities. Since the subject includes the conservation biology, students will get some basic knowledge for the measures to protect the biodiversity.			
Semester	4	Credit	redit 4 Instructional hours for practical/labwork//fieldwork 15	
Total Student Learning Time	Instructional hours for theory 60			
Pre-requisite	Basic knowledge about biotic fa	actors of the envi	ronment.	

COURSEOUTCOMES(CO)

CO No.	Expected Course Outcome	Taxonomic Level (TL)	PSO No.
	Upon completion of this course, students will be able to;		
1	Understand the basic concepts of Biodiversity and conservation biology	А	1
2	Study the distribution, significance and threats of biodiversity	U, An	2
3	Understand and evaluate the various initiatives for biodiversity conservation	U, E	1, 5
4	Understand and explain the concept of human ecology and natural history.	U, An	1,6
5	Understand and analyse the legal and policy aspects of conservation science	U, An	6,7

-

		CO NO
Module1: Biodiversity - An introduction	13 Hours	1
The evolution of biodiversity. Theories and Concepts of Biod species/speciation. The distribution of biodiversity in macro scale. and biodiversity. Values of Biodiversity – Direct and indirect use use value, productive use value, optional value, social value. Endem the endemism.	Species interactions values, consumptive	
Module2: Threats to Biodiversity	13 Hours	1, 2
Threats to biodiversity: habitat loss, habitat fragmentation, deforestation, invasive species, over-exploitation, pollution and climate change, and Man-Wildlife conflicts. Ecological consequences of reduction in biodiversity, alien and invasive species, diseases, and pollution. Red data book and IUCN categories-criteria for categorization. Threatened species. Keystone species. A brief account of endangered flora and fauna of India.		
Module3: Biodiversity Conservation in Practice	13 Hours	1, 3
Historical perspective of conservation, Importance of conservation, Conservation and sustainable development, Role of CBD and MAB, Ecosystem people and traditional conservation mechanisms, In-situ conservation: Biosphere reserves, National parks, Wild life sanctuaries, Protected area management. Ex situ conservation: Botanical gardens, Zoological parks, Herbaria, cryopreservation, seed banks, gene banks.		
Module4: Introduction to Conservation Biology	8 Hours	1, 3, 4
History, Concepts and Background, Biogeography of India. Western Ghats, Basic understanding of common flora in Southern Western Ghats. Wild life biology Restoration biology		
Module5: Conservation – Legal and policy framework	13 Hours	5
The Biological Diversity Act, 2002. Biological Diversity Rules, 2003. Intellectual Property Rights (IPR), TRIPS, Indigenous Knowledge Systems, The protection of plant varieties and farmer's rights (PVPFR) Act, 2001, 2007. Forest (conservation) Act, 1980 and its amendments. Wildlife Protection Act. National Green Tribunal Act 2010. National and International conservation policies and conservation challenges.		

Mode of	Classroom activities
Transaction	Field activities
	Lab based activities

Mode of	Continuous Evaluation Assignment/Quiz/Discussion/Seminar	
Assessment		
Internal Exam (40%)		
	Final exam (60%)	

- 1. Sutherland, W. J. 2004. The Conservation Handbook, Research, Management and Policy, Blackwell Science ltd. P278.
- 2. Nair, S. C. Southern Western Ghats: A biodiversity conservation Plan, INTACH, New Delhi. P92.
- 3. Michael E. Soule and Bruce Wilcox, 1980. Conservation Biology: An Evolutionary-Ecological Perspective.
- 4. Lewis, M. 2003. Inventing Global Ecology: Tracking the biodiversity ideal in India, Orient Longman. P369.
- 5. Martin, G.J. 1995. Ethnobotany A methods manual. Chapman & Hall. Madras.
- 6. Maxted, N., B. V. Ford-Lloyd and J. G. Hawkes. 1997. Plant Genetic conservation- the insitu approach. Chapman & Hall, Madras.
- 7. Ahmadullah, M and Nayar, M. P. 1987. Endemic plants of the Indian Region. Vol. I Botanical Survey of India.
- 8. Heywood, V. H. (Ed) 1995. Global Biodiversity Assessment (UNEP), Cambridge, University Press, Cambridge.

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4+ 1 Integrated UG and PG Programme			
Course Title	Natural and Anthropogenic Dis	sasters		
Course Type	Major			
Course Level	200-299			
Course Code	MG4DSCUEN203			
Course Overview	The course deals with the major natural and anthropogenic disasters, its environmental constraints. The course also elaborates on the basic disaster management strategies employed worldwide.			
Semester	4	Credit	4	
Total Student Learning Time	Instructional hours for theory		Instructional hours for practical/labwork//fieldwork	
	60		15	
Pre-requisite	Basic knowledge about environmental disasters			

COURSE OUTCOMES(CO)

CO No.	Expected Course Outcome	Taxonomic Level (TL)	PSO No.
	Upon completion of this course, students will be able to;		
1	Explain the relation between Earth's processes and disasters	U	1
2	Distinguish various types and causative factors of disasters	An	2
3	Concept of Disaster Preparedness and illustrate the key concepts of disaster management	U	5
4	Analyse the International disaster management system, Assess the disaster management strategies in India	An, E	5,7

		CO NO
Module1: Environment and Disasters	10 Hours	1, 2
Science and Facts of Natural Hazards. Earth's processes as disasteres external Characteristics. Causal factors and characteristics of disa		
Module 2: Natural Disasters	10 Hours	1, 2
Natural Disasters: Meteorological disasters & Geological disasters.		
Flood, Cyclone, Earthquakes, Landslides, Tsunami etc.		
Module 3: Anthropogenic Disasters	15 Hours	1, 2
Anthropogenic Disasters: Chemical, Industrial and Nuclear r Accident-related Disasters (Air, Sea, Rail & Road). Biological Dis failures (Building and Bridge), War & Terrorism etc. Causes, effe examples for all disasters.	sasters, Structural	
Module 4: Disaster Management Concepts	15 Hours	3
Introduction to key concepts, terminologies and their complexities (Hazard, vulnerability, Exposure, Risk, Crisis, emergencies, Vulnerability, Disasters, Resilience). Organizations, bodies and Finance. International Strategies and functions. Role of United Nations in Disaster management. International Disaster management support system. Unified response strategy. Mapping Disasters using global datasets. National and international information networks and inventories.		
Module 5: Disaster Management in Indian Context	10 Hours	3, 4
Major Disasters in India. National Vulnerability profile. National Disaster management Hierarchy and Institutionalisation. National Disaster Decision support system. Technological applications. Role of research organisations. Challenges of disasters in India.		

Mode of Transaction	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning (Video), interactive Instruction:, Active co-operative learning, Seminars, Group Assignments Authentic learning, , Library work and Group discussion, Presentation by individual student/ Group representative; Field work and field visits
------------------------	---

Mode of	Continuous Evaluation	
Assessment	Assignment/Quiz/Discussion/Seminar	
	Internal Exam (40%)	
	Final exam (60%)	

- 1. Coppola D. P., 2007.Introduction to International Disaster management. Elsevier. Butterworth-Heinemann.
- 2. Peduzzi P., Dao H., and Herold C., 2005. Mapping Disastrous Natural Hazards Using Global Datasets Natural Hazards Volume 35, Number 2, 265-289,
- 3. Shaw R and Krishnamurthy R.R., (ed.) 2009. Disaster management Global Challenges and Local solutions. University Press, India.
- 4. Keller E.D., and Blodgett R. H, 2006.Natural Hazards. Pearson Printice Hall
- 5. Kapur A., Neeti, Meena, Deepthima, Roshani and Debanjali, Disasters in India Studies of grim Reality. Rawat Publications, New Delhi

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School			
Programme	4 + 1 Integrated UG and PG Programme			
Course Title	Waste Management			
Course Type	Minor			
Course Level	200-299			
Course Code	MG4DSCUES241			
Course Overview	The course provides an in-depth understanding of the principles, challenges, and strategies associated with waste management, focusing on sustainable practices and treatment technologies. Through theoretical learning and practical applications, students will explore various types of waste, their impacts on health and the environment, and effective management and disposal methods.			
Semester	4	Credit	3	
Total Student Learning Time	Instructional hours for theory 16		Instructional hours for practical/lab work/fieldwork 30	
Pre-requisite				

COURSE OUTCOME (CO)

CO No.	Expected Course Outcome Upon completion of this course, students will be able to;	Learning Domains	PSO
1	Understand the fundamental concepts of waste management, including types, sources, and impacts of solid and hazardous wastes on health and the environment.		1

2	Analyse municipal solid waste properties, identify appropriate collection, transportation, and disposal techniques, and evaluate treatment methods.	An, E	5
3	Assess the characteristics and classification of hazardous waste, develop management strategies for medical, nuclear, and radioactive wastes, and explore advanced treatment methods in alignment with Indian waste management regulations.	E	5
4	Develop a comprehensive understanding of Integrated Waste Management (IWM), including stakeholder roles, policy frameworks, and the waste management hierarchy, to propose sustainable solutions for waste challenges.	U	1,2

		CO NO
Module 1: Introduction to Waste Management	15 Hours	1
Definition and Importance of Waste Management; Types and Sources of and Hazardous Waste; Impacts of improper Waste Management on Hea Environment; Treatment Methods, chemical, biological and Advanced Methods; Concept of Three 'R's; Concept of Zero Waste.	alth and the	
Module 2: Solid Waste Management	15 Hours	2
Municipal Solid Waste: Types, sources, properties and impact transportation, disposal, processing of municipal solid wastes; Treat Incineration, landfilling, composting, vermicomposting.		
Module 3: Hazardous Waste Management	15 Hours	3
Hazardous waste: Characteristics and classification; Management of hospital wastes, Nuclear and radioactive wastes-storage, collection, disposal; Hazardous Waste Treatment-Physical, Chemical and Biolog Hazardous Wastes Management in India.	, transport and	
Module 4: Integrated Waste Management	15 Hours	4
Concepts and Principles of IWM; Waste management hierarchy; Role of Government, Industries, Communities, NGO's; Waste management framework.		

Mode of Transaction	Classroom activities
Mode of Assessment	Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final Exam (70%)

- 1. Abbasi, S.A., Ramasamy, E.V. 2001. Solid Waste Management with Earthworms Discovery Publishing house, New Delhi.
- Abbasi, S.A., Ramasamy, E.V. 2001. Solid Waste Management with Earthworms Discovery Publishing house, New Delhi.
- 3. Khan, M.K. 2004. Hospital waste Management: Principles and guidelines, Kanishka Publishers, New Delhi.
- Kanti L. Shah (1999). Basics of Solid and Hazardous Waste Management Technology, Prentice Hall.
- Metcalf and Eddy. 1991. Waste Water Engineering Treatment, Disposal and Reuse. McGraw Hill International Edition, New York.

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School		
Programme	4 + 1 Integrated UG and PG Programme		
Course Title	Biodiversity Assessment		
Course Type	SEC		
Course Level	200-299		
Course Code	MG4SECUES201		
Course Overview	students with the skills and kr biodiversity in various contexts, projects and conservation initiat assessment and data analysis wil	h understanding of biodiversity and equip mowledge to assess, evaluate, and reports, particularly in the realm of developmentives. Practical techniques for biodiversi ill be complemented by insights into report regulatory purposes, particularly with ent (EIA) frameworks.	
Semester	4	Credit 3	
Total Student Learning Time	Instructional hours for theory 15	y Instructional hours for practical/lab work/fieldwork 30	
Pre-requisite			

COURSE OUTCOME (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO
	Upon completion of this course, students will be able to;		
1	Demonstrate an understanding of biodiversity concepts, species interactions, levels of biodiversity, and the significance of biodiversity assessment in conservation.	U	1

2	Analyze the impact of development projects on biodiversity,	An	2
	interpret baseline data, and apply biodiversity assessment		
	methodologies in Environmental Impact Assessments (EIA).		
3	Apply biodiversity sampling methods, including quadrat	А	3
	techniques, transect sampling, wildlife census, and		
	biodiversity indices, for assessing flora and fauna.		
4	Prepare structured biodiversity assessment reports using	А	3
	advanced data analysis, visualization techniques, and tools		
	like GIS, ensuring compliance with scientific and		
	regulatory standards.		

		CO NO
Module 1: Biodiversity- An introduction	4 Hours	1
Theories and Concepts of Biodiversity; Species interactions and biodiversity; Levels of Biodiversity; Threats to Biological Diversity; Endangered and Threatened species, IUCN, Red Data Book; Biodiversity Assessment – Significance in conservation		
Module 2: Biodiversity Assessment in Development Projects	4 Hours	2
Understanding the impact of development projects on biodiversity Biodiversity assessment in infrastructure, mining, and urban develo Baseline data collection and interpretation.		
Module 3: Assessment of Biodiversity	4 Hours	3
Indicators of Biodiversity; Biodiversity assessment: Quadrate metho quadrates in Forests; Transect Sampling; Wild life Census; Collectio plant and animal taxonomy; Biodiversity Indices (Simpson index, S index, Species richness).	n of samples for	
Module 4: Report Preparation - biodiversity	4 Hours	4
Structure and Components of a Biodiversity Report; Data Analysis at Techniques; Tools for Data Presentation: Remote Sensing and Biodiversity Reports for Scientific and Regulatory Purposes. afforestation	l GIS; Writing	

Mode of Transaction	Classroom activities Field activities Lab based activities
Mode of Assessment	Assignment/Quiz/Discussion/Seminar Internal Exam (40%) Final Exam (70%)

- 1. Begon, M., Townsend, C. R., & Harper, J. L. (2020). *Ecology: From Individuals to Ecosystems* (5th ed.). Wiley.
- 2. Sutherland, W. J. (Ed.). (2006). *Ecological Census Techniques: A Handbook*. Cambridge University Press.
- Noss, R. F. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation Biology, 4(4), 355–364.
- Jacobson, S. K. (2009). Communication Skills for Conservation Professionals (2nd ed.). Island Press.
- 5. Secretariat of the Convention on Biological Diversity (CBD). (2006). *Guidelines on Biodiversity in Impact Assessment*. UNEP.
- Margules, C. R., & Sarkar, S. (2007). Systematic Conservation Planning. Cambridge University Press.

4+1Integrated UG and PG Programme

ENVIRONMENTAL SCIENCE

School	Graduate School				
Programme	4 + 1 Integrated UG and PG Programme				
Course Title	Environmental Analysis				
Course Type	VAC				
Course Level	200-299				
Course Code	MG4VACUES201				
Course Overview	The course provides with a comprehensive understanding of methods and techniques used to monitor, analyze, and assess various environmental components and emphasizes the importance of accurate environmental data in understanding pollution, managing natural resources, and informing policy and decision-making. Through theoretical knowledge and practical application, students will explore the principles of environmental monitoring, water, soil, and air quality analysis, and advanced analytical techniques.				
Semester	4	Cred	it	3	
Total Student Learning	Instructional hours for theory	y	Instructional hours for practical/lab work/fieldwork 30		
Time Pre- requisite			30		

COURSE OUTCOME (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO
	Upon completion of this course, students will be able to;		
1	Understand the scope, importance, and applications of environmental analysis in monitoring and managing key environmental components such as air, water, soil.	U	1
2	Identify and evaluate physical, chemical, and biological water quality parameters using appropriate sampling and	An, E	3

	analysis methods, and interpret results based on established standards and indices.		
3	Assess soil properties, including nutrients and heavy metals, through suitable analytical techniques, and understand their environmental implications on ecosystems and agricultural practices.	An, E	2
4	Analyze air quality parameters, including particulate and gaseous pollutants, using monitoring tools and apply air quality standards to assess environmental health risks.	An	2

		CO NO
Module 1: Environmental Analysis- Introduction	7 Hours	1
Definition and scope of environmental analysis; Importance of mon analysis in environmental management; Key environmental compor water, soil); Overview of environmental pollution and degradation; environmental analysis in policy and decision-making; Inorganic an analysis.	ents (air, Role of	
Module 2: Water Quality Analysis	8 Hours	2
Water quality parameters: physical-colour, temperature, odo conductivity, turbidity; chemical -pH, TDS, DO, BOD, Hardnes Acidity, COD, Nitrate, Phosphate, Chloride and biological para coliforms and faecal coliforms; Sampling methods for surface and Water quality standards and indices.	ss, Alkalinity, meters- Total	
Module 3: Soil Quality Analysis	8 Hours	3
Soil properties and their environmental significance: physical- Tex and bulk density; chemical- pH, organic carbon, nitrogen, phosphor heavy metals (Pb, Cd, Hg). and biological- microbial activity; Soil storage methods; Techniques for analysis of nutrients, contaminan metals; Impact of soil degradation on ecosystems.	us, potassium, sampling and	
Module 4: Air Quality Analysis	7 Hours	4
Air pollutants: Particulate matter (PM10, PM2.5), gaseous pollutant CO, Ozone); Meteorological parameters and their role in air qualit Air Quality Index, Standards for ambient air quality (NAAQS and V	y monitoring;	

Mode of Transaction	Classroom activities Field activities
	Lab based activities
Mode of Assessment	Assignment/Quiz/Discussion/Seminar
	Internal Exam (40%)
	Final Exam (70%)

- 1. Abbasi S A, Water quality sampling and analysis, Discovery Publishing New Delhi
- APHA (1995). Standard methods for the examination of water and wastewater. 19th edition American Public Health Association, Washington, DC
- 3. Mamata Tomar, Quality Assessment of Water and Waste Water, Lewis Publishers London
- Maiti, S.K. (2003) Handbook of methods in environmental studies, Vol. 2: Air, noise, soil, overburden, solid waste and ecology. ABD Publishers, Jaipur.
- 5. NEERI , Air quality monitoring, A course manual (Photostat), NEERI Nagpur